Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Pathogens and Culture Media
2.2. Isolation and Screening of Antagonistic Bacterial Strain
2.3. Identification of Antagonistic Bacterial Isolate
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. VOC Activities of Antagonistic Bacterial Isolate Against Other Plant Pathogenic Fungi
2.6. Biological Efficiency of the VOCs on A. membranaceus Root Rot
2.7. Extraction and Analysis of VOCs from Antagonistic Bacterial Strain
2.8. Transcriptome Sequencing
2.9. Data Analysis
3. Results
3.1. Isolation and Screening of Antagonistic Bacterial Isolate with Antifungal VOCs
3.2. Identification of Strain 2-12
3.3. SEM Analysis of F. oxysporum Hyphae
3.4. VOC Activities of B. paralicheniformis 2-12 Against Fifteen Plant Pathogenic Fungi
3.5. Biocontrol Effects of B. paralicheniformis 2-12 VOCs on A. membranaceus Root Rot
3.6. Determination of B. paralicheniformis 2-12 VOCs
3.7. Transcriptomic Analysis
3.7.1. Quality Control of Data
3.7.2. Analysis of Differentially Expressed Genes (DEGs)
3.7.3. GO and KEGG Annotation Analyses
3.7.4. GO and KEGG Enrichment Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, Y.; Li, P.; Wang, D.; Cheng, Y. Micellar electrokinetic chromatography for the quantitative analysis of flavonoids in the Radix of Astragalus membranaceus var. Mongholicus. Planta Med. 2008, 74, 84–89. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Ma, Y.; Zhang, X.; Yang, H.; Li, G.; Li, X.; Wang, M.; Zhao, X.; Wang, J.; et al. Rapid and specific detection of Fusarium acuminatum and Fusarium solani associated with root rot on Astragalus membranaceus using loop-mediated isothermal amplification (LAMP). Eur. J. Plant Pathol. 2022, 163, 305–320. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, H.; Chen, J.; Chen, X.; Wen, Y.; Xu, L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement. Altern. Med. 2018, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Ny, V.; Houka, M.; Pavela, R.; Tříska, J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J. Funct. Foods 2021, 77, 104339. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Wang, Y.; Li, Y.; Yang, L.; Lu, B.; Chen, C.; He, R.; Wang, X.; Gao, J. Species and distribution of Fusarium causing ginseng root rot and antifungal efficacy of captan and hymexazol against F. spp. in China. Plant Dis. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, J.; Shan, S.; Jiang, J.; Quan, X.; Wu, S.; Huang, S. Isolation and identification of root rot fungus of Astragalus membranaceus. Agric. Biotechnol. 2018, 7, 250–253. [Google Scholar] [CrossRef]
- Gao, F.; Xu, Y.; Zhao, L.; Chao, J.; Zhao, Z. Analysis of key differential metabolites in Astragalus membranaceus var. mongholicus against Fusarium oxysporum and assessment of sucrose as putative resistance-related metabolite. Physiol. Mol. Plant Pathol. 2025, 138, 102671. [Google Scholar] [CrossRef]
- Wang, C.; Hao, D.; Jiao, W.; Li, J.; Yuan, J.; Ma, Y.; Wang, X.; Xu, A.; Wang, Q.; Wang, Y. Identification and fungicide sensitivity of Fusarium spp. associated with root rot of Scutellaria baicalensis in Shanxi Province, China. Phytopathology 2024, 114, 1533–1541. [Google Scholar] [CrossRef]
- Ma, G.; Duan, X.; Xu, W.; Zhou, Y.; Ma, H.; Ma, W.; Qi, H. Identification and laboratory screening of chemical agents of root rot pathogens of Astragalus membranaceus var. mongholicus. Acta Agrestia Sin. 2022, 30, 1122–1130. [Google Scholar]
- Yue, Y.; Wang, Z.; Zhong, T.; Guo, M.; Huang, L.; Yang, L.; Kan, J.; Zalán, Z.; Hegyi, F.; Takács, K.; et al. Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea. Microbiol. Res. 2023, 267, 127253. [Google Scholar] [CrossRef]
- Ni, H.; Kong, W.L.; Zhang, Q.Q.; Wu, X.Q. Volatiles emitted by Pseudomonas aurantiaca ST-TJ4 trigger systemic plant resistance to Verticillium dahliae. Microbiol. Res. 2024, 287, 127834. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, D.; Chen, J.; Qin, Y.; Li, X.; Qin, S. Growth promotion and biological control of fungal diseases in tomato by a versatile rhizobacterium, Pseudomonas chlororaphis subsp. aureofaciens SPS-41. Physiol. Mol. Plant Pathol. 2024, 131, 102274. [Google Scholar] [CrossRef]
- Mari, M.; Bautista-Banos, S.; Dharini Sivakumar, D. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biol. Technol. 2016, 122, 70–81. [Google Scholar] [CrossRef]
- Netzker, T.; Shepherdson, E.M.F.; Zambri, M.P.; Elliot, M.A. Bacterial volatile compounds: Functions in communication, cooperation, and competition. Annu. Rev. Microbiol. 2020, 74, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Dinango, V.N.; Eke, P.; Youmbi, D.Y.; Kouokap, L.R.K.; Kouipou, R.M.T.; Tamghe, G.G.; Mabou, L.C.N.; Wakam, L.N.; Boyom, F.F. Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot. Rhizosphere 2022, 23, 100562. [Google Scholar] [CrossRef]
- Manikandan, A.; Jaivel, N.; Johnson, I.; Krishnamoorthy, R.; Senthilkumar, M.; Raghu, R.; Gopal, N.O.; Mukherjee, P.K.; Anandham, R. Suppression of Macrophomina root rot, Fusarium wilt and growth promotion of some pulses by antagonistic rhizobacteria. Physiol. Mol. Plant Pathol. 2022, 121, 101876. [Google Scholar] [CrossRef]
- Tu, M.; Zhu, Z.; Zhao, X.; Cai, H.; Zhang, Y.; Yan, Y.; Yin, K.; Sha, Z.; Zhou, Y.; Chen, G.; et al. The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum. J. Integr. Agric. 2024. [Google Scholar] [CrossRef]
- Xie, S.; Si, H.; Wang, S.; Duan, Y.; Wang, Z.; Niu, J. Biocontrol activities and mechanisms of endophytic Bacillus licheniformis SY41 against Atractylodes chinensis root rot. Sci. Hortic. 2025, 341, 113995. [Google Scholar] [CrossRef]
- Alijani, Z.; Amini, J.; Ashengroph, M.; Bahramnejad, B. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Int. J. Food Microbiol. 2019, 307, 108276. [Google Scholar] [CrossRef]
- Wang, C.; Duan, T.; Shi, L.; Zhang, X.; Wang, M.; Wang, J.; Ren, L.; Zhao, X.; Wang, Y. Characterization of volatile organic compounds produced by Bacillus siamensis YJ15 and their antifungal activity against Botrytis cinerea. Plant Dis. 2022, 106, 2321–2329. [Google Scholar] [CrossRef]
- Tian, J.; Huang, B.; Luo, X.; Zeng, H.; Ban, X.; He, J.; Wang, Y. The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chem. 2012, 130, 520–527. [Google Scholar] [CrossRef]
- Yamamoto, S.; Harayama, S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microb. 1995, 61, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Ghazouani, A.; El-Gayar, K.; Abada, E. Molecular characterization of gene encoding halo tolerant amylase of Bacillus paralicheniformis isolated from Jazan region. Mod. J. Microb. Biol. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Clerck, D.E.; Vanhoutte, T.; Hebb, T.; Geerinck, J.; Devos, J.; De Vos, P. Isolation, characterization, and identification of bacterial contaminants in semifinal gelatin extracts. Appl. Environ. Microb. 2004, 70, 3664–3672. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Yang, X.; Ma, M.; Chen, H.; Shen, D.; Li, J. Advances in the identification of Bacillus subtilis and closely related species. Microbiol. China 2014, 41, 968–974. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Zhang, X.; Bai, W.; Zhang, L.; Pei, H.; Zhang, Y. Control effects of Bacillus siamensis G-3 volatile compounds on raspberry postharvest diseases caused by Botrytis cinerea and Rhizopus stolonifer. Biol. Control 2020, 141, 104135. [Google Scholar] [CrossRef]
- Robles, C.A.; Ceriani-Nakamurakarea, E.; Slodowicz, M.; González-Audino, P.; Carmarán, C.C. Granulobasidium vellereum (Ellis & Cragin) Jülich, a promising biological control agent. Biol. Control 2018, 117, 99–108. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, L.; Fan, W.; Zhang, X.; Chen, X.; Wang, M.; Wang, J. Biocontrol potential of volatile organic compounds from Pseudomonas chlororaphis ZL3 against postharvest gray mold caused by Botrytis cinerea on Chinese cherry. Biol. Control 2021, 159, 104613. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. J. Chromatogr. B 2018, 1099, 46–55. [Google Scholar] [CrossRef]
- Xu, Y.X.; Zhang, M.; Fang, Z.X.; Sun, J.C.; Wang, Y.Q. How to improve bayberry (Myrica rubra Sieb. et Zucc.) juice flavour quality: Effect of juice processing and storage on volatile compounds. Food Chem. 2014, 151, 40–46. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhou, F.Y.; Wang, B.; Xu, D.D.; Cao, Q.J.; Lu, M.; Sun, J.H. Volatiles produced by bacteria alleviate antagonistic effects of one associated fungus on Dendroctonus valens larvae. Sci. China Life Sci. 2017, 60, 924–926. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, X.; Zhang, C.; Duan, Y. Pseudomonas protegens volatile organic compounds inhibited brown rot of postharvest peach fruit by repressing the pathogenesis-related genes in Monilinia fructicola. Food Microbiol. 2024, 122, 104551. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.Y.; Zhu, X.M.; Zhang, S.B.; Lv, Y.Y.; Zhai, H.C.; Wei, S.; Ma, P.A.; Hu, Y.S. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int. J. Food Microbiol. 2024, 410, 110514. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qin, Z.; Wu, S.; Zhao, P.; Zhen, C.; Gao, H. Antifungal mechanism of volatile organic compounds produced by Bacillus subtilis CF-3 on Colletotrichum gloeosporioides assessed using omics technology. J. Agric. Food Chem. 2021, 69, 5267–5278. [Google Scholar] [CrossRef] [PubMed]
- Jinal, H.N.; Sakthivel, K.; Amaresan, N. Characterisation of antagonistic Bacillus paralicheniformis (strain EAL) by LC–MS, antimicrobial peptide genes, and ISR determinants. Antonie Leeuwenhoek 2020, 113, 1167–1177. [Google Scholar] [CrossRef]
- Xie, T.; Shen, S.; Hu, R.; Li, W.; Wang, J. Screening, identification, and growth promotion of antagonistic endophytes associated with Chenopodium quinoa against quinoa pathogens. Phytopathology 2023, 113, 1839–1852. [Google Scholar] [CrossRef]
- Kushmitha, B.; Ashraf, S.; Nakkeeran, S.; Johnson, I.; Saranya, N.; Mahendra, K.; Raish, M. Whole genome sequencing of rice endophyte Bacillus paralicheniformis NB stem 4: A potential biocontrol agent for the suppression of pearl millet blast disease. Physiol. Mol. Plant Pathol. 2025, 138, 102663. [Google Scholar] [CrossRef]
- Chaouachi, M.; Marzouk, T.; Jallouli, S.; Elkahoui, S.; Gentzbittel, L.; Ben, C.; Djébali, N. Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol. Technol. 2021, 172, 111389. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, B.; Liu, H.; Han, J.; Zhang, Y. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol. Control 2017, 105, 27–39. [Google Scholar] [CrossRef]
- Jiang, C.H.; Liao, M.J.; Wang, H.K.; Zheng, M.Z.; Xu, J.J.; Guo, J.H. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control 2018, 126, 147–157. [Google Scholar] [CrossRef]
- Calvo, H.; Mendiara, I.; Arias, E.; Gracia, A.P.; Blanco, D.; Venturini, M.E. Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol. Technol. 2020, 166, 111208. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.; Zhao, Q.; Chen, M.; Zhang, Y.; Gao, C.; Jia, Z.; Song, S.; Guan, J.; Shang, Z. Volatile organic compounds produced by Bacillus aryabhattai AYG1023 against Penicillium expansum causing blue mold on the Huangguan pear. Microbiol. Res. 2024, 278, 127531. [Google Scholar] [CrossRef]
- Martins, S.J.; Faria, A.F.; Pedroso, M.P.; Cunha, M.G.; Rocha, M.R.; Medeiros, F.H.V. Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biol. Control 2019, 131, 36–42. [Google Scholar] [CrossRef]
- Nishida, I.; Watanabe, D.; Tsolmonbaatar, A.; Kaino, T.; Ohtsu, I.; Takagi, H. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 2016, 62, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Mccarthy, M.W.; Walsh, T.J. Amino acid metabolism and transport mechanisms as potential antifungal targets. Int. J. Mol. Sci. 2018, 19, 909. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, Y.; Li, Y.; Ye, Z.; Li, L.; Zhou, Z. Antifungal effects of citral against Alternaria alternata in postharvest pear fruit and its potential mechanism. Postharvest Biol. Technol. 2025, 223, 113424. [Google Scholar] [CrossRef]
Fungi | Host | Percentage Mycelial Inhibition (%) | Shapiro–Wilk p |
---|---|---|---|
Fusarium oxysporum | Phaseolus radiatus | 69.04 ± 0.63 de | 0.244 |
Fusarium solani | Astragalus membranaceus | 75.89 ± 1.93 bc | 0.258 |
Exserohilum turcicum | Zea mays | 77.22 ± 2.57 bc | 0.550 |
F. semitectum | Zea mays | 54.66 ± 2.00 h | 0.843 |
F. graminearum | Zea mays | 62.12 ± 2.89 fg | 0.040 |
Fusarium oxysporum | Musa paradisiaca | 63.06 ± 2.87 fg | 0.420 |
Botrytis cinerea | Cerasus pseudocerasus | 94.96 ± 2.28 a | 0.042 |
F. acuminatum | Astragalus membranaceus | 72.97 ± 6.15 cd | 0.323 |
F. avenaceum | Vitis vinifera | 31.88 ± 4.65 j | 0.796 |
F. equiseti | Astragalus membranaceus | 47.89 ± 4.45 i | 0.453 |
Fusarium graminearum | Triticum aestivum | 76.07 ± 2.03 bc | 0.245 |
Alternaria alternata | Chrysanthemum morifolium | 64.57 ± 2.88 ef | 0.534 |
Colletotrichum gloeosporioides | Capsicum annuum | 58.39 ± 3.47 gh | 0.063 |
F. oxysporum | Solanum melongena | 81.10 ± 0.32 b | 0.828 |
F. oxysporum | Cucumis sativus | 59.39 ± 5.00 fgh | 0.328 |
Compounds | Chemical Formula | MW 1 | RT 2 (min) | SI 3 | RSI 4 |
---|---|---|---|---|---|
Ethyl 2-methylbutanoate | C7H14O2 | 130.18 | 6.09 | 693 | 748 |
Benzeneethanaminea-methyl | C9H13N | 135.23 | 6.28 | 705 | 720 |
Propanoic acid, 3-amino-3-oxo- | C3H5NO3 | 103.08 | 6.31 | 603 | 952 |
N-Acetyl-L-alanine | C5H9NO3 | 131.13 | 6.32 | 592 | 981 |
2,4-Octadiyne | C8H10 | 106.17 | 6.92 | 744 | 848 |
Tridecane | C13H28 | 184.36 | 9.9 | 825 | 865 |
Undecane,5-methyl | C12H26 | 170.33 | 9.91 | 801 | 876 |
Decane,2,6-dimethyl | C12H26 | 170.33 | 10.66 | 620 | 901 |
3,5-dimethylheptan-3-ol | C9H20O | 144.25 | 10.67 | 603 | 734 |
1-Butanol,2,2-dimethyl | C6H14O | 102.17 | 10.67 | 670 | 775 |
2-Methylundecane | C12H26 | 170.33 | 13.32 | 835 | 864 |
3,3-Dimethylhexane | C8H18 | 114.23 | 14.00 | 742 | 786 |
2,3,4-Trimethylpentane | C8H18 | 114.23 | 14.14 | 555 | 764 |
Heptane,1-propoxy | C10H22O | 158.28 | 14.36 | 580 | 671 |
2,5-Dimethyl-3,4-hexanediol | C8H18O2 | 146.23 | 14.36 | 603 | 691 |
Decane,2,9-dimethyl | C12H26 | 170.33 | 16.19 | 675 | 818 |
2,4,6-Trimethyloctane | C11H24 | 156.31 | 16.2 | 688 | 808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yuan, J.; Zhao, R.; Yuan, S.; Su, Y.; Jiao, W.; Huo, X.; Wang, M.; Fan, W.; Wang, C. Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot. Microorganisms 2025, 13, 1782. https://doi.org/10.3390/microorganisms13081782
Wang Y, Yuan J, Zhao R, Yuan S, Su Y, Jiao W, Huo X, Wang M, Fan W, Wang C. Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot. Microorganisms. 2025; 13(8):1782. https://doi.org/10.3390/microorganisms13081782
Chicago/Turabian StyleWang, Yan, Jiaqi Yuan, Rui Zhao, Shengnan Yuan, Yaxin Su, Wenhui Jiao, Xinyu Huo, Meiqin Wang, Weixin Fan, and Chunwei Wang. 2025. "Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot" Microorganisms 13, no. 8: 1782. https://doi.org/10.3390/microorganisms13081782
APA StyleWang, Y., Yuan, J., Zhao, R., Yuan, S., Su, Y., Jiao, W., Huo, X., Wang, M., Fan, W., & Wang, C. (2025). Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot. Microorganisms, 13(8), 1782. https://doi.org/10.3390/microorganisms13081782