Comparative Analysis of Bioactive Compounds and Flavor Characteristics in Red Fermentation of Waxy and Non-Waxy Millet Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism and Materials
2.2. Solid-State Fermentation
2.3. Determination of Chromatic Characteristics
2.4. Determination of Bioactive Components
2.4.1. Determination of MK
2.4.2. Determination of MP Content
2.4.3. Determination of Total and Free Fatty Acid Content
2.4.4. Determination of Polyphenols and Flavonoids Contents
2.5. HS-SPME-GC–MS
2.5.1. Sample Preparation
2.5.2. GC-MS Conditions
2.5.3. Qualitative Analysis
2.6. Electronic-Tongue (E-Tongue) Analysis
2.7. Statistical Analysis
3. Results
3.1. Analysis of Chromatic Characteristics
3.2. Bioactive Components
3.2.1. Analysis of Changes in the MP Contents
3.2.2. Analysis of the Change in MK Content
3.2.3. Analysis of the Change in Fatty Acid Content
3.2.4. Analysis of the Changes in the Levels of Polyphenols and Flavonoids
3.3. Characterization of VCs
3.4. Analysis Using the E-Tongue
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ceasar, S.A.; Prabhu, S.; Ebeed, H.T. Protein research in millets: Current status and way forward. Planta 2024, 260, 43. [Google Scholar] [CrossRef]
- Priya; Verma, R.K.; Lakhawat, S.; Yadav, V.K.; Gacem, A.; Abbas, M.; Yadav, K.K.; Park, H.-K.; Jeon, B.-H.; Mishra, S. Millets: Sustainable treasure house of bioactive components. Int. J. Food Prop. 2023, 26, 1822–1840. [Google Scholar] [CrossRef]
- Sanderson, E.; Duizer, L.M.; McSweeney, M.B. Descriptive analysis of a new proso millet product. Int. J. Gastron. Food Sci. 2017, 8, 14–18. [Google Scholar] [CrossRef]
- Saini, S.; Saxena, S.; Samtiya, M.; Puniya, M.; Dhewa, T. Potential of underutilized millets as Nutri-cereal: An overview. J. Food Sci. Technol. 2021, 58, 4465–4477. [Google Scholar] [CrossRef]
- Kalaivani, M.; Sabitha, R.; Kalaiselvan, V.; Rajasekaran, A. Health benefits and clinical impact of major nutrient, red yeast rice: A review. Food Bioprocess Technol. 2010, 3, 333–339. [Google Scholar] [CrossRef]
- Fajolu, O.L.; Vu, A.L.; Dee, M.M.; Zale, J.; Gwinn, K.D.; Ownley, B.H. First Report of Leaf Spot and Necrotic Roots on Switchgrass Caused by Curvularia lunata var. aeria in the United States. Plant Dis. 2012, 96, 1372. [Google Scholar] [CrossRef]
- Feng, S.-S.; Li, W.; Hu, Y.-J.; Feng, J.-X.; Deng, J. The biological activity and application of Monascus pigments: A mini review. Int. J. Food Eng. 2022, 18, 253–266. [Google Scholar] [CrossRef]
- Bule, M.; Khan, F.; Niaz, K. Red yeast rice (Monascus purpureus). In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier: Amsterdam, The Netherlands, 2019; pp. 509–515. [Google Scholar]
- Arruda, G.L.; Reis, W.S.; Raymundo, M.T.F.; Shibukawa, V.P.; Cruz-Santos, M.M.; Silos, N.O.; Prado, C.A.; Marcelino, P.R.; da Silva, S.S.; Santos, J.C. Biotechnological potential of Monascus: Biological aspects, metabolites of interest, and opportunities for new products. Microbiol. Res. 2025, 297, 128177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-T.; Wu, A.-H.; Aslam, M.; Song, J.-Z.; Chi, Z.-M.; Liu, G.-L. Developing Rhodotorula as microbial cell factories for the production of lipids and carotenoids. Green Carbon 2024, 2, 409–420. [Google Scholar] [CrossRef]
- Hou, R.; Liu, S.; Lv, N.; Cui, B.; Wei, Y.; Long, F.; Fu, H.; Wang, Y. Nutritional-and flavor-enhancing effects of biomass production by Rhodotorula spp. on cantaloupe juice. Food Biosci. 2024, 59, 103866. [Google Scholar] [CrossRef]
- Zhang, B.B.; Xing, H.B.; Jiang, B.J.; Chen, L.; Xu, G.R.; Jiang, Y.; Zhang, D.Y. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber. J. Biosci. Bioeng. 2018, 125, 333–338. [Google Scholar] [CrossRef]
- Zhang, B.B.; Lu, L.P.; Xu, G.R. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study. J. Biotechnol. 2015, 206, 60–65. [Google Scholar] [CrossRef]
- Viscarra, S.; Vargas, A.; Jardine, L.; Tulbek, M.; Bett, K.E. Detecting color differences in lentil flour samples using an inexpensive, hand-held colorimeter. bioRxiv 2024. [Google Scholar] [CrossRef]
- Li, P.; Cai, X.; Li, S.; Zhao, W.; Liu, J.; Zhang, X.; Zhang, A.; Guo, L.; Li, Z.; Liu, J. Nutrient and metabolite characteristics of the husk, bran and millet isolated from the foxtail millet (Setaria italica L.) during polishing. Food Chem. X 2024, 23, 101541. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Ju, M.; Zhang, J.; Mai, T.; Li, L.; Gu, T.; Liu, Y.; Gao, M. Co-culture of Rhodotorula mucilaginosa and Monascus purpureus increased the yield of carotenoids and Monascus pigments. LWT 2023, 183, 114949. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, L.; Zhang, W.; Li, J.; Gao, X.; Feng, B. Changes in Morphological and Physicochemical Properties of Waxy and Non-waxy Proso Millets during Cooking Process. Foods 2019, 8, 583. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Chen, J.-r.; Yang, Y.; Yu, D.-h.; Ma, Z.-q.; Ren, L.-k.; Wu, N.; Chen, F.-l.; Liu, X.-f.; Wang, B. Effects of fermentation on the structure and physical properties of glutinous proso millet starch. Food Hydrocoll. 2022, 123, 107144. [Google Scholar] [CrossRef]
- Zeng, C.; Yoshizaki, Y.; Yin, X.; Wang, Z.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Additional moisture during koji preparation contributes to the pigment production of red koji (Monascus-fermented rice) by influencing gene expression. J. Food Sci. 2021, 86, 969–976. [Google Scholar] [CrossRef]
- Wu, S.; Dong, C.; Zhang, M.; Cheng, Y.; Cao, X.; Yang, B.; Li, C.; Peng, X. Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin. Foods 2024, 13, 1573. [Google Scholar] [CrossRef]
- Wei, R.R.; He, M.H.; Sang, Z.P.; Dong, J.H.; Ma, Q.G. Structurally diverse Monascus pigments with hypolipidemic and hepatoprotective activities from highland barley Monascus. Fitoterapia 2022, 156, 105090. [Google Scholar] [CrossRef]
- Yue, T.; Zhang, W.; Pei, H.; Danzeng, D.; He, J.; Yang, J.; Luo, Y.; Zhang, Z.; Xiong, S.; Yang, X.; et al. Monascus pigment-protected bone marrow-derived stem cells for heart failure treatment. Bioact. Mater. 2024, 42, 270–283. [Google Scholar] [CrossRef]
- Liang, S.; Yang, G.; Ma, Y. Chemical characteristics and fatty acid profile of foxtail millet bran oil. J. Am. Oil Chem. Soc. 2010, 87, 63–67. [Google Scholar] [CrossRef]
- Ren, J.; Liu, Y.; Mao, J.; Xu, Y.; Wang, M.; Hu, Y.; Wang, S.; Liu, S.; Qiao, Z.; Cao, X. Metabolomics and physiological methods revealed the effects of drought stress on the quality of broomcorn millet during the flowering stage. Agronomy 2024, 14, 236. [Google Scholar] [CrossRef]
- Jiao, J.; Zheng, Z.; Liu, Z.; You, C. Study of the Compositional, Microbiological, Biochemical, and Volatile Profile of Red-Veined Cheese, an Internal Monascus-Ripened Variety. Front. Nutr. 2021, 8, 649611. [Google Scholar] [CrossRef]
- Annor, G.A.; Marcone, M.; Corredig, M.; Bertoft, E.; Seetharaman, K. Effects of the amount and type of fatty acids present in millets on their in vitro starch digestibility and expected glycemic index (eGI). J. Cereal Sci. 2015, 64, 76–81. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, Q.; Li, Z.; Shen, Z.; Tan, B.; Zhai, X. Changing the polyphenol composition and enhancing the enzyme activity of sorghum grain by solid-state fermentation with different microbial strains. J. Sci. Food Agric. 2024, 104, 6186–6195. [Google Scholar] [CrossRef] [PubMed]
- Kilua, A.; Nagata, R.; Han, K.H.; Fukushima, M. Beneficial health effects of polyphenols metabolized by fermentation. Food Sci. Biotechnol. 2022, 31, 1027–1040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, C.; Wang, H.; Ablimit, A.; Sun, Q.; Dong, H.; Zhang, B.; Hu, W.; Liu, C.; Wang, C. Identification of characteristic volatiles and metabolomic pathways during the fermentation of red grapefruit by Monascus purpureus using HS-SPME-GC-MS and metabolomics. Food Chem. 2025, 464, 141786. [Google Scholar] [CrossRef]
- Bennis, N.X.; Bieseman, J.; Daran, J.G. Unlocking lager’s flavour palette by metabolic engineering of Saccharomyces pastorianus for enhanced ethyl ester production. Metab. Eng. 2024, 85, 180–193. [Google Scholar] [CrossRef]
- Khan, T.; Azad, A.A.; Islam, R.U. Millets: A comprehensive review of nutritional, antinutritional, glycemic, bioactive, and processing aspects. J. Food Compos. Anal. 2025, 141, 107364. [Google Scholar] [CrossRef]
- Kieliszek, M.; Kot, A.M.; Kolotylo, V. Bioaccumulation of selenium and production of carotenoids by the yeast Rhodotorula mucilaginosa. Biocatal. Agric. Biotechnol. 2023, 53, 102903. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Cheng, P.; Yu, G. Rhodotorula mucilaginosa-alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022, 8, e11505. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.S.K.; Lotas, K.M.; Cortez, A.C.A.; Fernandes, F.D.S.; Simplício de Souza, É.; Dufossé, L.; de Souza, J.V.B. Exploration of carotenoid-producing Rhodotorula yeasts from amazonian substrates for sustainable biotechnology applications. Curr. Res. Microb. Sci. 2025, 8, 100373. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, C.; Jiang, B.; Mo, X.; Wang, Z. Characterization of volatile compounds profiles and identification of key volatile and odor-active compounds in 40 sweetpotato (Ipomoea Batatas L.) varieties. Food Chem. X 2025, 25, 102058. [Google Scholar] [CrossRef]
- Machado, W.R.C.; Murari, C.S.; Duarte, A.L.F.; Del Bianchi, V.L. Optimization of agro-industrial coproducts (molasses and cassava wastewater) for the simultaneous production of lipids and carotenoids by Rhodotorula mucilaginosa. Biocatal. Agric. Biotechnol. 2022, 42, 102342. [Google Scholar] [CrossRef]
- Keivani, H.; Jahadi, M. Solid-state fermentation for the production of Monascus pigments from soybean meals. Biocatal. Agric. Biotechnol. 2022, 46, 102531. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Yu, W.; Li, A.; Wang, Y. Study on production of yellow pigment from potato fermented by Monascus. Food Biosci. 2022, 50, 102088. [Google Scholar] [CrossRef]
- Long, M.; Cai, Y.; Zheng, N.; Lu, Z.; Cao, W.; Li, Y.; Pei, X.; Tolbert, O.; Xia, X. Clean monascus pigments production from chinese rice wine wastes through submerged fermentation. Food Biosci. 2023, 52, 102451. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, F.; Zhou, B.; Liang, Y.; Lin, Q.; Lu, D.; Zhou, X.; Liu, J. Comparative analysis of different rice substrates for solid-state fermentation by a citrinin-free Monascus purpureus mutant strain with high pigment production. Food Biosci. 2023, 56, 103245. [Google Scholar] [CrossRef]
- Ghosh, S.; Chakraborty, A.; Dam, B. Improved yield of UV and heat-stable Monascus yellow pigment by statistical optimization of solid-state fermentation conditions and extraction process. Innov. Food Sci. Emerg. Technol. 2024, 98, 103859. [Google Scholar] [CrossRef]
- Tan, Y.; Gao, M.; Li, L.; Jiang, H.; Liu, Y.; Gu, T.; Zhang, J. Functional components and antioxidant activity were improved in ginger fermented by Bifidobacterium adolescentis and Monascus purpureus. LWT 2024, 197, 115931. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Zhang, X.; Ma, W.; Cao, H.; Ye, X.; Chen, J. Lactic acid bacteria-assisted Monascus fermentation textured soy protein: Coloring plant-based meat and the dynamic changes of its physicochemical properties. Food Biosci. 2024, 61, 104984. [Google Scholar] [CrossRef]
- Prado, C.; Loureiro, B.; Arruda, G.; Santos, J.; Chandel, A. Hydrodynamic cavitation assisted pretreatment of sugarcane bagasse in the presence of yeast cell mass for the production of sugars and their use for biopigments production by Monascus ruber. Biomass Bioenergy 2024, 190, 107434. [Google Scholar] [CrossRef]
- Chen, X.; Gui, R.; Li, N.; Wu, Y.; Chen, J.; Wu, X.; Qin, Z.; Yang, S.-T.; Li, X. Production of soluble dietary fibers and red pigments from potato pomace in submerged fermentation by Monascus purpureus. Process Biochem. 2021, 111, 159–166. [Google Scholar] [CrossRef]
- Guo, Z.; Lai, Y.; Gou, Y.; Guo, J.; Lian, X. Screening of Monascus to produce high-yield monacolin K by solid-state fermentation on medium of coix seed and gluten fractions. Food Biosci. 2025, 63, 105754. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, X.; Wen, A.; Qin, L. Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Sci. Nutr. 2022, 10, 3143–3153. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, N.; Shi, L.; Miao, Y.; Liu, X.; Ge, X.; Cheng, Y.; Zhang, X. Characterization and comparison of predominant aroma compounds in microwave-treated wheat germ and evaluation of microwave radiation on stability. J. Cereal Sci. 2020, 93, 102942. [Google Scholar] [CrossRef]
- He, J.; Li, M.; Gao, M.; Li, L.; Liu, Y.; Gu, T.; Wang, J.; Zhang, J. Differential volatile compounds between rice and tartary buckwheat by solid-state fermentation with Monascus purpureus. Int. J. Food Microbiol. 2025, 435, 111181. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.-F.; Huang, J.; Farhadi, A.; Zhang, B.-B. Ethanol addition elevates cell respiratory activity and causes overproduction of natural yellow pigments in submerged fermentation of Monascus purpureus. LWT 2021, 139, 110534. [Google Scholar] [CrossRef]
- Luo, F.; Li, L.; Wu, Z.; Yang, J.; Yi, X.; Zhang, W. Development of new red mold rice and determination of their properties. LWT 2018, 87, 259–265. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, B.; Zhang, H.; Wu, Z.; Li, M.; Wang, D.; Wang, C. Combining with E-nose, GC-MS, GC-IMS and chemometrics to explore volatile characteristics during the different stages of Zanthoxylum bungeanum maxim fruits. Food Res. Int. 2024, 195, 114964. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.P.; Blank, I.; Li, F.; Li, C.; Liu, Y. GC × GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef]
- Ardiansyah; Nada, A.; Rahmawati, N.T.I.; Oktriani, A.; David, W.; Astuti, R.M.; Handoko, D.D.; Kusbiantoro, B.; Budijanto, S.; Shirakawa, H. Volatile Compounds, Sensory Profile and Phenolic Compounds in Fermented Rice Bran. Plants 2021, 10, 1073. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chen, M.; Cui, S.; Tang, X.; Zhang, Q.; Zhao, J.; Mao, B.; Zhang, H. Effects of Lacticaseibacillus casei fermentation on the bioactive compounds, volatile and non-volatile compounds, and physiological properties of barley beverage. Food Biosci. 2023, 53, 102695. [Google Scholar] [CrossRef]
- Chu, X.; Zhu, W.; Li, X.; Su, E.; Wang, J. Bitter flavors and bitter compounds in foods: Identification, perception, and reduction techniques. Food Res. Int. 2024, 183, 114234. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel umami ingredients: Umami peptides and their taste. J. Food Sci. 2017, 82, 16–23. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, X.; Xiao, N.; Feng, Q.; Liu, J.; Shi, W. Characterization of the effect of different sugar on volatile flavor compounds of dried fish floss using e-nose combined with HS-SPME/GC-MS. J. Food Process. Preserv. 2022, 46, e16567. [Google Scholar] [CrossRef]
- Wang, R.; Chang, S.; Liang, M.; Wu, Y.; Xin, R.; Liu, Y.; Chen, L.; Zhou, S. Characterization of key odorants in soy sauce and their concentration changes during storage. J. Food Qual. 2023, 2023, 6673089. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, X.; Li, Z.; Wang, Q.; Guo, T.; Dong, B.; Zhao, G. Long-chain fatty acid esters produced by Sporidiobolus pararoseus or Rhodotorula mucilaginosa enhance the fat flavor of soy sauce fermented by defatted soybeans. Food Chem. 2025, 490, 145097. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bai, Y.; Li, A.; Yu, T.; Li, X.; Du, B.; Han, X. The effect of Aspergillus cristatus fermentation on cold-region mulberry leaf tea: Functional properties, sensory quality, and metabolite composition. Food Biosci. 2025, 71, 107151. [Google Scholar] [CrossRef]
- Qiu, Y.; He, X.; Zheng, W.; Cheng, Z.; Zhang, J.; Ding, Y.; Lyu, F. Odor-induced saltiness enhancement of volatile compounds screened from duck stewed with chili pepper. Food Chem. 2025, 471, 142717. [Google Scholar] [CrossRef] [PubMed]
- Standard ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
Fermentation Time/d | L* | a* | b* | w | ΔE |
---|---|---|---|---|---|
Miao Xiang glutinous millet | |||||
0d-1 | 91.53 ± 0.07 c | −2.37 ± 0.04 k | 24.69 ± 0.68 g | 73.79 ± 0.67 f | |
2d-1 | 89.91 ± 0.11 f | 1.33 ± 0.19 e | 31.88 ± 0.63 e | 66.53 ± 0.64 h | 8.25 ± 0.07 d |
4d-1 | 89.04 ± 0.11 g | 2.84 ± 0.23 d | 36.97 ± 0.58 d | 61.33 ± 0.6 i | 13.58 ± 0.27 c |
6d-1 | 90.43 ± 0.12 e | 0.45 ± 0.07 f | 28.53 ± 0.57 f | 69.9 ± 0.58 g | 4.90 ± 0.1 e |
8d-1 | 83.74 ± 0.56 i | 14.41 ± 1.18 b | 47.03 ± 0.44 c | 48.19 ± 0.86 j | 29.02 ± 0.92 b |
10d-1 | 84.00 ± 0.16 hi | 13.92 ± 0.43 b | 47.13 ± 0.25 c | 48.32 ± 0.31 j | 28.74 ± 0.82 b |
12d-1 | 84.27 ± 0.10 h | 13.08 ± 0.22 c | 48.29 ± 0.08 b | 47.55 ± 0.09 j | 29.13 ± 0.42 b |
14d-1 | 81.18 ± 0.08 j | 19.32 ± 0.23 a | 52.17 ± 0.04 a | 41.27 ± 0.07 k | 36.52 ± 0.37 a |
Jigu-42 | |||||
0d-2 | 91.80 ± 0.01 bc | −2.25 ± 0.04 jk | 21.94 ± 0.03 j | 76.47 ± 0.03 c | |
2d-2 | 92.13 ± 0.03 a | −1.64 ± 0.03 ij | 17.34 ± 0.19 m | 80.89 ± 0.18 a | 4.65 ± 0.18 e |
4d-2 | 91.92 ± 0.01 ab | −1.28 ± 0.01 hi | 18.45 ± 0.06 l | 79.82 ± 0.06 b | 3.63 ± 0.07 f |
6d-2 | 91.51 ± 0.02 c | −0.77 ± 0.02 gh | 21.15 ± 0.13 k | 77.2 ± 0.12 c | 1.71 ± 0.03 h |
8d-2 | 91.12 ± 0.02 d | −0.20 ± 0.04 fg | 23.65 ± 0.11 hi | 74.74 ± 0.11 de | 2.75 ± 0.15 g |
10d-2 | 91.49 ± 0.02 c | −0.64 ± 0.04 gh | 21.13 ± 0.11 k | 77.21 ± 0.11 c | 1.83 ± 0.01 h |
12d-2 | 90.99 ± 0.01 d | 0.19 ± 0.03 f | 24.01 ± 0.04 gh | 74.35 ± 0.04 ef | 3.3 ± 0.09 fg |
14d-2 | 91.12 ± 0.01 d | 0.05 ± 0.03 f | 23.02 ± 0.04 i | 75.33 ± 0.04 d | 2.62 ± 0.09 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Liu, J.; Li, X.; Zhang, C.; Li, P.; Zhu, Y.; Liu, J.; Liu, B. Comparative Analysis of Bioactive Compounds and Flavor Characteristics in Red Fermentation of Waxy and Non-Waxy Millet Varieties. Foods 2025, 14, 2692. https://doi.org/10.3390/foods14152692
Yang Z, Liu J, Li X, Zhang C, Li P, Zhu Y, Liu J, Liu B. Comparative Analysis of Bioactive Compounds and Flavor Characteristics in Red Fermentation of Waxy and Non-Waxy Millet Varieties. Foods. 2025; 14(15):2692. https://doi.org/10.3390/foods14152692
Chicago/Turabian StyleYang, Zehui, Jie Liu, Xiaopeng Li, Changyu Zhang, Pengliang Li, Yawei Zhu, Jingke Liu, and Bin Liu. 2025. "Comparative Analysis of Bioactive Compounds and Flavor Characteristics in Red Fermentation of Waxy and Non-Waxy Millet Varieties" Foods 14, no. 15: 2692. https://doi.org/10.3390/foods14152692
APA StyleYang, Z., Liu, J., Li, X., Zhang, C., Li, P., Zhu, Y., Liu, J., & Liu, B. (2025). Comparative Analysis of Bioactive Compounds and Flavor Characteristics in Red Fermentation of Waxy and Non-Waxy Millet Varieties. Foods, 14(15), 2692. https://doi.org/10.3390/foods14152692