Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (340)

Search Parameters:
Keywords = area preserving transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 14002 KiB  
Article
Sustainable Archaeological Tourism—A Framework of an Assessment Method for Potential Tourism Use of Hillforts (Gords) in the Lower Silesia Region, Poland
by Damian Werczyński and Krzysztof Widawski
Sustainability 2025, 17(16), 7536; https://doi.org/10.3390/su17167536 - 20 Aug 2025
Viewed by 270
Abstract
This study seeks to develop and evaluate a methodological framework for assessing the tourism potential of hillforts, by using a selected sample of 25 of these heritage resources located in the Lower Silesia Voivodeship. This region, as one of Poland’s most popular among [...] Read more.
This study seeks to develop and evaluate a methodological framework for assessing the tourism potential of hillforts, by using a selected sample of 25 of these heritage resources located in the Lower Silesia Voivodeship. This region, as one of Poland’s most popular among domestic and international tourists, is increasingly confronting overtourism at its primary attractions. Concurrently, it possesses underutilised cultural assets, notably 250 remnants of gords/hillforts (grodziska in Polish) spanning various historical periods and dispersed across the whole area. Thus, to ensure the universality of the method, samples of hillforts from three main topographic zones of Lower Silesia were selected. In addition to the aim of testing the method, a secondary objective of the research involved conducting a preliminary assessment of selected hillforts’ tourism potential in different parts of the voivodeship. The methodology combined desk research and field studies across all selected archaeological sites. Concerning the primary objective, the developed assessment tool effectively replicated the multidimensional analytical framework characteristic of established methodologies, yielding reliable outcomes for evaluating gords’ tourism potential. However, modifications to the scoring system are recommended to enhance methodological precision. Regarding analysis of the 25 surveyed hillforts, the results indicate that objects from all zones mainly demonstrate high tourism potential, suggesting an opportunity for transformation into tourist attractions. The integration of hillforts into existing tourism infrastructure could significantly contribute to localised sustainable development across the region. The primary significance of these heritage resources lies in their capacity to facilitate the diversification of tourism offerings across distinct areas of the voivodeship. This development holds particular strategic value for northern poviats currently peripherally engaged in tourism economy. Moreover, by leveraging hillforts, communities obtain assets important in the process of building a common identity around cultural/historical place while safeguarding monuments. Concurrently, the most attractive southern poviats will benefit from the new attractions as they can help in mitigating overtourism pressures at overcrowded places, being an interesting alternative to the top attractions. This approach aligns with strategies to disperse tourist flows through specialised archaeological tourism products, thereby balancing economic benefits and local communities’ well-being with heritage preservation. Full article
(This article belongs to the Special Issue Sustainable Development of Regional Tourism)
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
Remote Observation of the Impacts of Land Use on Rainfall Variability in the Triângulo Mineiro (Brazilian Cerrado Region)
by Ana Carolina Durigon Boldrin, Bruno Enrique Fuzzo, João Alberto Fischer Filho and Daniela Fernanda da Silva Fuzzo
Remote Sens. 2025, 17(16), 2866; https://doi.org/10.3390/rs17162866 - 17 Aug 2025
Viewed by 647
Abstract
Throughout history, humans have modified the environment, transforming natural biomes into agricultural areas. In the 1990s, economic policies accelerated the expansion of agricultural frontiers in Brazil, including the Triângulo Mineiro and Alto Paranaíba regions. This study analyzes rainfall variability from 1990 to 2021 [...] Read more.
Throughout history, humans have modified the environment, transforming natural biomes into agricultural areas. In the 1990s, economic policies accelerated the expansion of agricultural frontiers in Brazil, including the Triângulo Mineiro and Alto Paranaíba regions. This study analyzes rainfall variability from 1990 to 2021 and its relationship with land use. For this purpose, satellite data from MapBiomas, ERA5, and NASA POWER were processed using Google Earth Engine and QGIS. Statistical methods included the Spearman correlation and the Mann–Kendall trend test. The results revealed that average annual precipitation decreased from 1663.35 mm in 1991 to 1128.94 mm in 2022—a 32.14% reduction. Simultaneously, agricultural and urban areas increased by 365% and 237.59%, respectively. Spearman analysis showed negative correlations between precipitation and agriculture (ρ = −0.51) and urbanization (ρ = −0.51), and positive correlations with pasture (ρ = +0.52) and water bodies (ρ = +0.46). These trends suggest that land use intensification significantly affects regional rainfall patterns. Unlike studies focusing mainly on Amazon deforestation, this research emphasizes the Cerrado biome’s climatic vulnerability. The use of long-term, high-resolution remote sensing data allows a robust analysis of land use impacts. By highlighting a clear link between land transformation and precipitation decline, this study offers insights for policymaking aimed at balancing agricultural development and water resource preservation. This research underscores the importance of sustainable land management practices, such as agroecology, reforestation, and ecological corridors, for regional climate resilience. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

22 pages, 860 KiB  
Article
Symmetry-Aware Code Generation: Distilling Pseudocode Reasoning for Lightweight Deployment of Large Language Models
by Yonglin Li, Shanzhi Gu and Mingyang Geng
Symmetry 2025, 17(8), 1325; https://doi.org/10.3390/sym17081325 - 14 Aug 2025
Viewed by 295
Abstract
Code generation is a critical task in software engineering, enabling the automation of transforming natural language descriptions into executable code. Recent advancements in large language models (LLMs) have demonstrated their potential to significantly enhance code generation capabilities by leveraging complex reasoning processes. However, [...] Read more.
Code generation is a critical task in software engineering, enabling the automation of transforming natural language descriptions into executable code. Recent advancements in large language models (LLMs) have demonstrated their potential to significantly enhance code generation capabilities by leveraging complex reasoning processes. However, the large size of these models poses challenges for deployment in resource-constrained environments, as they require substantial computational resources and memory. The challenge lies in transferring the sophisticated problem-solving strategies of LLMs to smaller, more efficient models without sacrificing performance, while maintaining symmetry between the reasoning steps and final code generation. This task is further complicated by the need to preserve high code generation accuracy while reducing the resource demands of deployment. Although distillation methods have been proposed, efficiently transferring both the reasoning process and final code generation remains an underexplored area. In this work, we propose a novel distillation framework that extracts intermediate reasoning steps, such as pseudocode, from LLMs and transfers them to smaller models. Our approach enables smaller models to replicate the problem-solving strategies of larger models through a multi-task learning framework, which includes both pseudocode and code generation tasks, thus maintaining the symmetry between reasoning and output. We conducted comprehensive experiments on the CodeSearchNet dataset, comparing our distillation framework across four student models (Tranx, CodeT5, NatGen, and SPT-Code) distilled from four large language models (CodeLlama-7B, CodeQwen-7B, DeepSeek, and GPT-4). Results show that our approach consistently improves code generation performance, with the best case (CodeT5 distilled from GPT-4) achieving up to 74% improvement in Top-1 accuracy over the baseline. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 2103 KiB  
Article
Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology
by Helder Fraga, Emanuele Serra, Nathalie Guimarães, Nazaret Crespo, António Fernandes, Christoph Menz and João A. Santos
Plants 2025, 14(16), 2466; https://doi.org/10.3390/plants14162466 - 8 Aug 2025
Viewed by 445
Abstract
Climate change is expected to significantly reshape viticulture across traditional wine regions, including the Douro winemaking region (DWR) in northern Portugal. This study evaluates projected impacts of climate change on key viticultural parameters, such as grapevine yield, phenology, and potential alcohol content, using [...] Read more.
Climate change is expected to significantly reshape viticulture across traditional wine regions, including the Douro winemaking region (DWR) in northern Portugal. This study evaluates projected impacts of climate change on key viticultural parameters, such as grapevine yield, phenology, and potential alcohol content, using an ensemble of high-resolution downscaled climate simulations for the recent-past (1986 to 2015) and for two emission scenarios: SSP1–2.6 (low-emissions pathway) and SSP5–8.5 (high-emissions pathway), for mid-century (2041–2070). Spatial and temporal analyses reveal a consistent and robust signal of change across all indicators, with magnitude and variability increasing under SSP5–8.5. Yield projections indicate a widespread decline across the region (−1 to −3 t/ha), especially under SSP5–8.5, with particularly strong reductions in currently high-yielding areas, such as Douro-Superior. This spatial heterogeneity suggests heightened vulnerability throughout the DWR, underscoring the importance of targeted adaptation strategies. Phenological analysis shows a marked advancement in flowering dates, shifting by up to 30 days earlier in the season, amplified under SSP5–8.5. These changes could impact grape development, increase exposure to early-season frost events, and disrupt traditional vineyard management schedules. Furthermore, potential alcohol content is projected to rise substantially across the region, with increases exceeding 2% vol in some areas under the more severe scenario. This trend may challenge wine typicity, regulatory classifications and geographical boundaries of the denominations of origin, and quality control, requiring both vineyard and oenological adaptations to manage elevated sugar levels. These findings point to significant, spatially variable climate-driven transformations in Douro viticulture. While some impacts may be partially mitigated under SSP1–2.6, SSP5–8.5 may require urgent adaptation to preserve wine quality, socioeconomic sustainability, and regional identity. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 401
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

22 pages, 1489 KiB  
Article
Artificial Intelligence in Education: An Exploratory Survey to Gather the Perceptions of Teachers, Students, and Educators Around the University of Salerno
by Sergio Miranda
Educ. Sci. 2025, 15(8), 975; https://doi.org/10.3390/educsci15080975 - 29 Jul 2025
Viewed by 762
Abstract
Artificial intelligence (AI) holds considerable promise to transform education, from personalizing learning to enhancing teaching efficiency, yet it simultaneously introduces significant concerns regarding ethical implications and responsible implementation. This exploratory survey investigated the perceptions of 376 teachers, university students, and future educators from [...] Read more.
Artificial intelligence (AI) holds considerable promise to transform education, from personalizing learning to enhancing teaching efficiency, yet it simultaneously introduces significant concerns regarding ethical implications and responsible implementation. This exploratory survey investigated the perceptions of 376 teachers, university students, and future educators from the University of Salerno area concerning AI integration in education. Data were collected via a comprehensive digital questionnaire, divided into sections on personal data, AI’s perceived impact, its usefulness, and specific applications in education. Descriptive and inferential statistical analyses, including mean, mode, standard deviation, and 95% confidence intervals, were applied to the Likert scale responses. Results indicated a general openness to AI as a supportive tool for personalized learning and efficiency. However, significant reservations emerged regarding AI’s capacity to replace the human role. For instance, 69% of participants disagreed that AI tutors could match human feedback efficiency, and strong opposition was found against AI replacing textbooks (81% disagreement) or face-to-face lessons (87% disagreement). Conversely, there was an overwhelming consensus on the necessity of careful and conscious AI use (98% agreement). Participants also exhibited skepticism regarding AI’s utility for younger learners (e.g., 80% disagreement for ages 0–6), while largely agreeing on its benefit for adult learning. Strong support was observed for AI’s role in providing simulations and virtual labs (89% agreement) and developing interactive educational content (94% agreement). This study underscores a positive inclination towards AI as an enhancement tool, balanced by a strong insistence on preserving human interaction in education, highlighting the need for thoughtful integration and training. Full article
Show Figures

Figure 1

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 411
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 457
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

22 pages, 3082 KiB  
Article
A Lightweight Intrusion Detection System with Dynamic Feature Fusion Federated Learning for Vehicular Network Security
by Junjun Li, Yanyan Ma, Jiahui Bai, Congming Chen, Tingting Xu and Chi Ding
Sensors 2025, 25(15), 4622; https://doi.org/10.3390/s25154622 - 25 Jul 2025
Viewed by 505
Abstract
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional [...] Read more.
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional Intrusion Detection System (IDS) makes it difficult to effectively deal with the dynamics and complexity of emerging threats. To solve these problems, a lightweight vehicular network intrusion detection framework based on Dynamic Feature Fusion Federated Learning (DFF-FL) is proposed. The proposed framework employs a two-stream architecture, including a transformer-augmented autoencoder for abstract feature extraction and a lightweight CNN-LSTM–Attention model for preserving temporal and local patterns. Compared with the traditional theoretical framework of the federated learning, DFF-FL first dynamically fuses the deep feature representation of each node through the transformer attention module to realize the fine-grained cross-node feature interaction in a heterogeneous data environment, thereby eliminating the performance degradation caused by the difference in feature distribution. Secondly, based on the final loss LAEX,X^ index of each node, an adaptive weight adjustment mechanism is used to make the nodes with excellent performance dominate the global model update, which significantly improves robustness against complex attacks. Experimental evaluation on the CAN-Hacking dataset shows that the proposed intrusion detection system achieves more than 99% F1 score with only 1.11 MB of memory and 81,863 trainable parameters, while maintaining low computational overheads and ensuring data privacy, which is very suitable for edge device deployment. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 9770 KiB  
Article
Microstructural Characterization of S355J2 Steel Plate Cut with Plasma in Water-Bed
by Teodor Machedon-Pisu, Mihai Machedon-Pisu and Arthur Olah
Coatings 2025, 15(8), 866; https://doi.org/10.3390/coatings15080866 - 23 Jul 2025
Viewed by 416
Abstract
When processing widely used materials in welded structures such as steels, a surface operation such as plasma cutting applied in the automated Computer Numerical Control (CNC) version can provide technical and economic benefits to the cut components, but the impact on health and [...] Read more.
When processing widely used materials in welded structures such as steels, a surface operation such as plasma cutting applied in the automated Computer Numerical Control (CNC) version can provide technical and economic benefits to the cut components, but the impact on health and environment must be addressed accordingly. In this paper, a plate with a base material made of S355J2 + AR structural steel is cut in 10 pieces with plasma in a water-bed designed and manufactured by the authors in order to mitigate such risks. The surfaces cut in the water-bed are compared to surfaces cut in open air by macroscopic analyses of the edge cut, by microscopic analyses of the cut parts—base material, heat-affected zone, and cut area—and by hardness determinations. The results reveal improvements as a result of plasma cutting in the water-bed: slag reduction, preservation of granulation, transformations in the austenitic temperature zone, and hardness in the heat-affected zone. Compared to a classical cutting procedure such as oxygen flame cutting, the proposed procedure offers a clean alternative and also requires low maintenance. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

25 pages, 6336 KiB  
Article
Treatment of Industrial Brine Using a Poly (Vinylidene Fluoride) Membrane Modified with Carbon Nanotubes
by Tshifhiwa T. Tshauambea, Soraya P. Malinga and Patrick G. Ndungu
Membranes 2025, 15(8), 220; https://doi.org/10.3390/membranes15080220 - 23 Jul 2025
Viewed by 506
Abstract
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, [...] Read more.
This study explores using polyvinylidene fluoride (PVDF) membranes modified with multi-walled carbon nanotubes (MWCNTs) to treat simulated and industrial brine from coal power stations. The MWCNTs were acid-treated and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Raman, and nitrogen sorption at 77 K, Thermogravimetric analysis (TGA), and Transmission electron microscopy (TEM). The desired membranes were obtained by casting from a solution of N-Methyl-2-pyrrolidone, PVDF, various weight percentages of MWCNTs, and a small amount of polyvinylpyrrolidone. The acid treatment of the MWCNTs introduced oxygen moieties on the surface, and increased pore volume and surface area while maintaining crystallinity and structural integrity remain preserved. The maximum rejection rate achieved was 41.82% with 1 wt.% of acid-treated MWCNTs in the PVDF membrane. Acid-treated MWCNTs loaded membranes had an improved rejection rate, which was 5× higher than membranes without MWCNTs. Full article
Show Figures

Figure 1

57 pages, 1459 KiB  
Article
Sustainable Digital Banking in Turkey: Analysis of Mobile Banking Applications Using Customer-Generated Content
by Yavuz Selim Balcioglu and Furkan Evranos
Sustainability 2025, 17(15), 6676; https://doi.org/10.3390/su17156676 - 22 Jul 2025
Viewed by 628
Abstract
This study addresses a critical gap in understanding how mobile banking applications contribute to sustainable development by introducing a novel text mining framework to analyze sustainability dimensions through user-generated content. We analyzed 120,000 reviews from six major Turkish mobile banking applications using an [...] Read more.
This study addresses a critical gap in understanding how mobile banking applications contribute to sustainable development by introducing a novel text mining framework to analyze sustainability dimensions through user-generated content. We analyzed 120,000 reviews from six major Turkish mobile banking applications using an ownership-sensitive analytical approach that integrates structural topic modeling with four sustainability dimensions (environmental, social, governance, and economic). Our analysis reveals significant institutional differences in sustainability approaches: government-owned banks demonstrate substantially stronger overall sustainability orientation (23.43% vs. 11.83% coverage) with pronounced emphasis on social sustainability (+181.7% growth) and economic development (+104.2% growth), while private banks prioritize innovation-focused sustainability. The temporal analysis (2022–2025) shows accelerating sustainability emphasis across all institutions, with distinct evolution patterns by ownership type. Institution-specific sustainability profiles emerge clearly, with each government bank demonstrating distinctive focus areas aligned with historical missions: cultural heritage preservation, agricultural sector support, and small business development. Mapping to Sustainable Development Goals reveals that government banks prioritize development-focused goals (SDGs 1, 8, and 10), while private banks emphasize innovation-focused goals (SDGs 9 and 17). This research makes three key contributions: demonstrating user-generated content as an effective lens for authentic sustainability assessment, establishing ownership-sensitive evaluation frameworks for digital banking sustainability, and providing empirical evidence for contextualized rather than universal sustainability strategies. The findings offer strategic implications for financial institutions, policymakers, and app developers seeking to enhance sustainable digital banking transformation. Full article
Show Figures

Figure 1

36 pages, 6346 KiB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 307
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

21 pages, 3532 KiB  
Review
Climate Hazards Management of Historic Urban Centers: The Case of Kaštela Bay in Croatia
by Jure Margeta
Climate 2025, 13(7), 153; https://doi.org/10.3390/cli13070153 - 19 Jul 2025
Viewed by 973
Abstract
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban [...] Read more.
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban landscape, culture, and economy. The aim of this study was to enhance the resilience and protection of cultural heritage and historic urban centers (HUCs) in the coastal area of Kaštela, Croatia, by providing recommendations and action guidelines in response to climate change impacts, including rising temperatures, sea levels, storms, droughts, and flooding. Preserving HUCs is essential to maintain their cultural values, original structures, and appearance. Many ancient coastal Roman HUCs lie partially or entirely below mean sea level, while low-lying medieval castles, urban areas, and modern developments are increasingly at risk. Based on vulnerability assessments, targeted mitigation and adaptation measures were proposed to address HUC vulnerability sources. The Historical Urban Landscape Approach tool was used to transition and manage HUCs, linking past, present, and future hazard contexts to enable rational, comprehensive, and sustainable solutions. The effective protection of HUCs requires a deeper understanding of the evolution of urban development, climate dynamics, and the natural environments, including both tangible and intangible urban heritage elements. The “hazard-specific” vulnerability assessment framework, which incorporates hazard-relevant indicators of sensitivity and adaptive capacity, was a practical tool for risk reduction. This method relies on analyzing the historical performance and physical characteristics of the system, without necessitating additional simulations of transformation processes. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

30 pages, 787 KiB  
Systematic Review
Success Factors in Transport Interventions: A Mixed-Method Systematic Review (1990–2022)
by Pierré Esser, Shehani Pigera, Miglena Campbell, Paul van Schaik and Tracey Crosbie
Future Transp. 2025, 5(3), 82; https://doi.org/10.3390/futuretransp5030082 - 1 Jul 2025
Viewed by 396
Abstract
This study is titled “Success Factors in Transport Interventions: A Mixed-Method Systematic Review (1990–2022)”. The purpose of the systematic review is to (1) identify effective interventions for transitioning individuals from private car reliance to sustainable transport, (2) summarise psychosocial theories shaping transportation choices [...] Read more.
This study is titled “Success Factors in Transport Interventions: A Mixed-Method Systematic Review (1990–2022)”. The purpose of the systematic review is to (1) identify effective interventions for transitioning individuals from private car reliance to sustainable transport, (2) summarise psychosocial theories shaping transportation choices and identify enablers and barriers influencing sustainable mode adoption, and (3) determine the success factors for interventions promoting sustainable transport choices. The last search was conducted on 18 November 2022. Five databases (Scopus, Web of Science, MEDLINE, APA PsycInfo, and ProQuest) were searched using customised Boolean search strings. The identified papers were included or excluded based on the following criteria: (a) reported a modal shift from car users or cars to less CO2-emitting modes of transport, (b) covered the adoption of low-carbon transport alternatives, (c) comprised interventions to promote sustainable transport, (d) assessed or measured the effectiveness of interventions, or (e) proposed behavioural models related to mode choice and/or psychosocial barriers or drivers for car/no-car use. The identified papers eligible for inclusion were critically appraised using Sirriyeh’s Quality Assessment Tool for Studies with Diverse Designs. Inter-rater reliability was assessed using Cohen’s Kappa to evaluate the risk of bias throughout the review process, and low-quality studies identified by the quality assessment were excluded to prevent sample bias. Qualitative data were extracted in a contextually relevant manner, preserving context and meaning to avoid the author’s bias of misinterpretation. Data were extracted using a form derived from the Joanna Briggs Institute. Data transformation and synthesis followed the recommendations of the Joanna Briggs Institution for mixed-method systematic reviews using a convergent integrated approach. Of the 7999 studies, 4 qualitative, 2 mixed-method, and 30 quantitative studies successfully passed all three screening cycles and were included in the review. Many of these studies focused on modelling individuals’ mode choice decisions from a psychological perspective. In contrast, case studies explored various transport interventions to enhance sustainability in densely populated areas. Nevertheless, the current systematic reviews do not show how individuals’ inner dispositions, such as acceptance, intention, or attitude, have evolved from before to after the implementation of schemes. Of the 11 integrated findings, 9 concerned enablers and barriers to an individual’s sustainable mode choice behaviour. In addition, two integrated findings emerged based on the effectiveness of the interventions. Although numerous interventions target public acceptance of sustainable transport, this systematic review reveals a critical knowledge gap regarding their longitudinal impact on individuals and effectiveness in influencing behavioural change. However, the study may be affected by language bias as it only included peer-reviewed articles published in English. Due to methodological heterogeneity across the studies, a meta-analysis was not feasible. Further high-quality research is needed to strengthen the evidence. This systematic review is self-funded and has been registered on the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY; Registration Number INPLASY202420011). Full article
Show Figures

Figure 1

Back to TopTop