Recent Advances on Emulsions and Applications: 3rd Edition

A special issue of Colloids and Interfaces (ISSN 2504-5377).

Deadline for manuscript submissions: 30 October 2025 | Viewed by 2289

Special Issue Editors


E-Mail Website
Guest Editor
Agriaquaculture Nutritional Genomic Center (CGNA), Temuco, Chile
Interests: emulsions science; encapsulation; delivery systems; bioactive compounds; emulsifiers; food science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Estación Central 9170201, Chile
Interests: encapsulation and delivery of bioactive compounds; in vitro digestion; improving plant protein techno-functional properties; consumer perception
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
Interests: essential oils; polymers; food packaging; encapsulation; controlled release
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Emulsion science and technology have been used for a long time to create a wide variety of commercial emulsified products, including food, pharmaceutical, and cosmetic products. Moreover, this type of colloidal system has been used as a vehicle for the encapsulation and delivery of different bioactive compounds, such as antioxidants, vitamins, and fragrances. In the last several years, there have been advances in emulsion science to improve the quality and performance of different emulsion-based products using new techniques and structural designs. This new generation of advanced emulsions may lead to products with improved quality and functionality. Therefore, we invite all researchers in the area to contribute to this Special Issue by submitting reviews or original articles. Manuscripts addressing recent advances in the creation of novel emulsion systems are welcome. The development and application of advanced emulsion technologies are considered for this Special Issue. In this context, contributions focused on emulsions stabilized by particle-based emulsifiers (Pickering emulsions), high-internal-phase emulsions, multilayer emulsions, nanoemulsions, multiple emulsions, emulgels, oleogel-based emulsions, bigels, water-in-water emulsions, and novel emulsifiers will be considered. Manuscripts on recent advances in emulsion-based delivery and encapsulation approaches are also welcome.

Dr. César Burgos-Díaz
Dr. Carla Arancibia
Dr. Karla Garrido-Miranda
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Colloids and Interfaces is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • emulsion science
  • delivery systems
  • nanoemulsions
  • encapsulation
  • emulsion technology
  • emulsion applications
  • emulsion structure
  • advances in emulsion systems
  • emulgels
  • oleogel-based emulsions
  • novel emulsifiers
  • active packaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 10408 KB  
Communication
Leaving Glauber’s Salt Island: The Road to Stabilisation
by Poppy O’Neill, Anastasia Stamatiou and Ludger Fischer
Colloids Interfaces 2025, 9(5), 60; https://doi.org/10.3390/colloids9050060 - 9 Sep 2025
Viewed by 135
Abstract
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by [...] Read more.
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by phase separation and associated loss of performance during repeated thermal cycling. This study aimed to address this limitation through a novel stabilisation approach. The material was encapsulated within an emulsion matrix designed to physically constrain the salt and inhibit separation during melting and to form a phase change dispersion. The phase change dispersion was subjected to 100 controlled heating–cooling cycles whilst monitoring the latent heat capacity and phase transition plateaus. The phase change dispersion retained its thermal properties throughout testing, showing no measurable degradation in storage capacity nor shift in phase transition temperature. These results demonstrate that this encapsulation mechanism can effectively maintain the functional performance of Glauber’s salt under repeated thermal cycling. This approach may form the basis for more durable salt hydrate-based storage media and has potential relevance for applications in building heating, waste heat recovery and renewable energy integration. By improving stability, this method helps unlock the long-term operational viability of phase change materials. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

17 pages, 1931 KB  
Article
Improvement in the Stability of Perilla Seed Oil Microemulsion and Its Role in Fat Accumulation Reduction in Caenorhabditis elegans
by Junwei Pan, Yunzhou Tang, Ziqing Liang, Yong Cao and Yunjiao Chen
Colloids Interfaces 2025, 9(5), 56; https://doi.org/10.3390/colloids9050056 - 30 Aug 2025
Viewed by 271
Abstract
Perilla seed oil (PSO) possesses various physiological functions, such as lowering blood lipids and preventing cancer; however, its poor water solubility, dispersibility, and oxidative stability severely limit its application scope. Epigallocatechin gallate (EGCG) is a natural antioxidant abundant in tea leaves. In this [...] Read more.
Perilla seed oil (PSO) possesses various physiological functions, such as lowering blood lipids and preventing cancer; however, its poor water solubility, dispersibility, and oxidative stability severely limit its application scope. Epigallocatechin gallate (EGCG) is a natural antioxidant abundant in tea leaves. In this study, PSO–casein–EGCG microemulsions were prepared, and their stability and lipid-lowering effects were evaluated. The results showed that the PSO microemulsion had a particle size of 361.23 ± 14.85 nm, a zeta potential of −20.77 ± 0.68 mV, a polydispersity index (PDI) of 0.17 ± 0.07, and an encapsulation efficiency of 94.3%. PSO microemulsions remained stable at room temperature for 5 days without droplet aggregation. The stability of the microemulsions was good when the NaCl concentration was between 0.1 and 1 mM and the pH was between 5 and 9. PSO microemulsions enhanced the oxidative stability of PSO. Additionally, PSO microemulsions significantly reduced triglyceride levels in Caenorhabditis elegans (77.50%, p < 0.005). Finally, it was found that the average lipid droplet size of ZXW618 mutant nematodes decreased by 41.23% after PSO microemulsion treatment. Therefore, PSO microemulsions may reduce fat accumulation in C. elegans by decreasing lipid droplet size. This provides new insights for advancing the application of PSO in the food processing industry. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

22 pages, 2212 KB  
Article
Bemotrizinol-Loaded Lipid Nanoparticles for the Development of Sunscreen Emulsions
by Maria Grazia Sarpietro, Debora Santonocito, Giuliana Greco, Stefano Russo, Carmelo Puglia and Lucia Montenegro
Colloids Interfaces 2025, 9(5), 54; https://doi.org/10.3390/colloids9050054 - 26 Aug 2025
Viewed by 517
Abstract
In this work, bemotrizinol (BMTZ), a broad-spectrum UV-filter, was loaded into nanostructured lipid carriers (NLC) whose lipid matrix contained different oils (isopropyl myristate, decyl oleate, caprylic/capric triglyceride) to assess the effects of the lipid core composition on the properties of the resulting NLC. [...] Read more.
In this work, bemotrizinol (BMTZ), a broad-spectrum UV-filter, was loaded into nanostructured lipid carriers (NLC) whose lipid matrix contained different oils (isopropyl myristate, decyl oleate, caprylic/capric triglyceride) to assess the effects of the lipid core composition on the properties of the resulting NLC. Subsequently, the effects of incorporating different concentrations of optimized BMTZ-loaded NLC on the technological properties of O/W emulsions (pH, viscosity, spreadability, occlusion factor, in vitro BMTZ release, skin permeation, and in vitro sun protection factor) were assessed. The optimized BMTZ-loaded NLC contained 3.0% w/w of isopropyl myristate and showed mean size = 190.6 ± 9.8 nm, polydispersity index = 0.153 ± 0.013, ζ-potential = −10.6 ± 1.7 mV, and loading capacity = 8% w/w. The incorporation of increasing concentrations (5, 10, 20% w/w) of optimized BMTZ loaded into emulsions provided a slight increase in spreadability, lower viscosity, and no change in pH, occlusion factor, and BMTZ release compared to emulsions containing free BMTZ. No BMTZ skin permeation was observed from all formulations. About a 20% increase in sun protection factor values was obtained for vehicles containing BMTZ-loaded NLC compared with formulations incorporating the same amount of free BMTZ. Therefore, incorporating BMTZ-loaded NLC into emulsions could be a promising strategy to develop safer and more effective sunscreen formulations. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

36 pages, 6346 KB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 376
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

Review

Jump to: Research

18 pages, 670 KB  
Review
Recent Developments and Applications of Food-Based Emulsifiers from Plant and Animal Sources
by Yuqiao Jin and Achyut Adhikari
Colloids Interfaces 2025, 9(5), 61; https://doi.org/10.3390/colloids9050061 - 10 Sep 2025
Viewed by 230
Abstract
Food-based emulsifiers, derived from natural or edible sources such as soybeans, oats, eggs, milk, and fruits, have gained increasing attention in the food industry due to their clean label appeal, recognition as natural ingredients, and alignment with consumer demand for fewer synthetic additives. [...] Read more.
Food-based emulsifiers, derived from natural or edible sources such as soybeans, oats, eggs, milk, and fruits, have gained increasing attention in the food industry due to their clean label appeal, recognition as natural ingredients, and alignment with consumer demand for fewer synthetic additives. These emulsifiers are also valued for their biodegradability, environmental sustainability, and potential nutritional benefits. The food-based compounds have been extensively studied for their functional and physicochemical properties. This review provides a comprehensive overview of recent developments and applications of food-based emulsifiers, with a focus on protein-based, polysaccharide-based, and phospholipid-based emulsifying agents derived from plant and animal sources. The mechanisms, advantages, and disadvantages of the food-based emulsifiers are discussed. Plant-based emulsifiers offer sustainability, wide availability, and cost-efficiency, positioning them as a promising area for research. Combinations of food-based emulsifiers such as polysaccharides, proteins, and phospholipids can be utilized to enhance emulsion stability. This paper evaluates current literature and discusses future challenges and trends in the development of food-based emulsifiers. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop