Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology
Abstract
1. Introduction
2. Results
2.1. Yield Projections
2.2. Flowering Date Projections
2.3. Alcohol Content Projections
3. Discussion
4. Material and Methods
4.1. Study Area
4.2. Crop Model Description
4.3. Climate Model Data
4.4. Soil and Terrain Data
4.5. Modelling Assumptions
4.6. Model Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DWR | Douro wine region |
References
- OIV. State of the World Vine and Wine Sector in 2022; International Organisation of Vine and Wine: Dijon, France, 2023; p. 20. [Google Scholar]
- CEEV. Economic, Social and Environmental Importance of the Wine Sector in the EU; CEEV: Brussels, Belgium, 2024. [Google Scholar]
- Wine America. National Impact Study of the Wine Industry; Wine America: Washington, DC, USA, 2025. [Google Scholar]
- IVDP. I.P.—Estatísticas; Instituto dos Vinhos do Douro e Porto: Porto, Portugal, 2025. [Google Scholar]
- Jones, G.V.; Alves, F. Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. Int. J. Global Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Sequeira, C.; Leal, P.M. The Brand as Value Production. From the Trademark to the Designation of Origin of Wines from the Douro Demarcated Region. Rivar-Rev. Iberoam. Vi 2020, 7, 136–157. [Google Scholar] [CrossRef]
- Rodrigues, S.; Ribeiro, H.; Alves, S.R.; Veloso, C.M. The Certification Process of Douro Valley Wines: Quality Determinants for Quality Wines. In Proceedings of the 22nd International Scientific Conference on Economic and Social Development (ESD)—The Legal Challenges of Modern World, Split, Croatia, 29–30 June 2017; pp. 895–909. [Google Scholar]
- Quintela, J.A.; Albuquerque, H.; Freitas, I. Port Wine and Wine Tourism: The Touristic Dimension of Douro’s Landscape. Sustainability 2023, 15, 11718. [Google Scholar] [CrossRef]
- Cosme, F.; Milheiro, J.; Pires, J.; Guerra-Gomes, F.I.; Filipe-Ribeiro, L.; Nunes, F.M. Authentication of Douro DO monovarietal red wines based on anthocyanin profile: Comparison of partial least squares? discriminant analysis, decision trees and artificial neural networks. Food Control. 2021, 125, 107979. [Google Scholar] [CrossRef]
- Yang, C.; Ceglar, A.; Menz, C.; Martins, J.; Fraga, H.; Santos, J.A. Performance of seasonal forecasts for the flowering and veraison of two major Portuguese grapevine varieties. Agric. For. Meteorol. 2023, 331, 109342. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Tscholl, S.; Candiago, S.; Marsoner, T.; Fraga, H.; Giupponi, C.; Egarter Vigl, L. Climate resilience of European wine regions. Nat. Commun. 2024, 15, 6254. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Santos, J. Vintage Port prediction and climate change scenarios. OENE One 2023, 57, 7694. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Brisson, N.; Launay, M.; Mary, B.; Beaudoin, N. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model; Editions Quae: Versailles, France, 2008; p. 297. [Google Scholar]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- García de Cortazar-Atauri, I.; Brisson, N.; Ollat, N.; Jacquet, O.; Payan, J.C. Asynchronous Dynamics of Grapevine (Vitis Vinifera) Maturation: Experimental Study for a Modelling Approach. J. Int. Sci. Vigne Du Vin 2009, 43, 83–97. [Google Scholar] [CrossRef]
- García de Cortazar-Atauri, I.; Brisson, N.; Gaudillere, J.P. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol. 2009, 53, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Costa, R.; Moutinho-Pereira, J.; Correia, C.M.; Dinis, L.T.; Goncalves, I.; Silvestre, J.; Eiras-Dias, J.; Malheiro, A.C.; Santos, J.A. Modeling Phenology, Water Status, and Yield Components of Three Portuguese Grapevines Using the STICS Crop Model. Am. J. Enol. Vitic. 2015, 66, 482–491. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Jones, G.V.; Goodrich, G.B. Influence of climate variability on wine regions in the western USA and on wine quality in the Napa Valley. Clim. Res. 2008, 35, 241–254. [Google Scholar] [CrossRef]
- Bonada, M.; Jeffery, D.W.; Petrie, P.R.; Moran, M.A.; Sadras, V.O. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust. J. Grape Wine Res. 2015, 21, 240–253. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Parker, A.K.; García de Cortazar-Atauri, I.; van Leeuwen, C.; Chuine, I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Fonseca, A.; Cruz, J.; Fraga, H.; Andrade, C.; Valente, J.; Alves, F.; Neto, C.; Flores, R.; Santos, J.A. Enhancing climate change impact assessment in viticulture by resolving microclimates. Eur. J. Agron. 2025, 170, 127740. [Google Scholar] [CrossRef]
- Rafique, R.; Ahmad, T.; Ahmed, M.; Khan, M.A. Adapting the process based STICS model to simulate phenology and yield of table grapes- a high value fruit crop in a new emerging viticulture zone of South Asia. Sci. Hortic. 2024, 336, 113419. [Google Scholar] [CrossRef]
- Yang, C.Y.; Menz, C.; Jaffe, M.S.D.; Costafreda-Aumedes, S.; Moriondo, M.; Leolini, L.; Torres-Matallana, A.; Molitor, D.; Junk, J.; Fraga, H.; et al. Projections of Climate Change Impacts on Flowering-Veraison Water Deficits for Riesling and Muller-Thurgau in Germany. Remote. Sens. 2022, 14, 1519. [Google Scholar] [CrossRef]
- Ruiz-Ramos, M.; Gabriel, J.L.; Vazquez, N.; Quemada, M. Evaluation of nitrate leaching in a vulnerable zone: Effect of irrigation water and organic manure application. Span. J. Agric. Res. 2011, 9, 924–937. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Sgubin, G.; Bois, B.; Ollat, N.; Swingedouw, D.; Zito, S.; Gambetta, G.A. Climate change impacts and adaptations of wine production. Nat. Rev. Earth Environ. 2024, 5, 258–275. [Google Scholar] [CrossRef]
- Ramos, M.C.; de Toda, F.M. Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Leolini, L.; Costafreda-Aumedes, S.; A Santos, J.; Menz, C.; Fraga, H.; Molitor, D.; Merante, P.; Junk, J.; Kartschall, T.; Destrac-Irvine, A.; et al. Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe. Appl. Sci. 2020, 10, 3800. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Leolini, L.; Menz, C.; Yang, C.Y.; Argenti, G.; Dibari, C.; Bindi, M.; Fraga, H.; Santos, J.A.; Molitor, D.; et al. Uncertainties in predicting the medium-term future occurrence of grapevine budburst in Europe: The role of phenological models and climate scenarios. OENE One 2025, 59, 8056. [Google Scholar] [CrossRef]
- Alikadic, A.; Pertot, I.; Eccel, E.; Dolci, C.; Zarbo, C.; Caffarra, A.; De Filippi, R.; Furlanello, C. The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agric. For. Meteorol. 2019, 271, 73–82. [Google Scholar] [CrossRef]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the phenology and composition of wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef]
- García de Cortázar-Atauri, I.; Duchêne, E.; Destrac-Irvine, A.; Barbeau, G.; De Rességuier, L.; Lacombe, T.; Parker, A.K.; Saurin, N.; Van Leeuwen, C. Grapevine phenology in France: From past observations to future evolutions in the context of climate change. OENE One 2017, 51, 115–126. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENE One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Sadras, V.O.; Petrie, P.R. Climate shifts in south-eastern Australia: Early maturity of Chardonnay, Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Aust. J. Grape Wine Res. 2011, 17, 199–205. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Jones, R.; Smith, D.K.E.; Krumins, M.; Gannon, K.E.; Dorling, L.; Johnson, Z.; Conway, D. Climate change projections for UK viticulture to 2040: A focus on improving suitability for Pinot noir. OENE One 2022, 56, 69–87. [Google Scholar] [CrossRef]
- Molitor, D.; Junk, J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENE One 2019, 53, 409–422. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed trends in winegrape maturity in Australia. Glob. Change Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Climate change and winegrape quality in Australia. Clim. Res. 2008, 36, 99–111. [Google Scholar] [CrossRef]
- Monteverde, C.; De Sales, F. Impacts of global warming on southern California’s winegrape climate suitability. Adv. Clim. Change Res. 2020, 11, 279–293. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Change 2005, 73, 319–343. [Google Scholar] [CrossRef]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust. J. Grape Wine Res. 2017, 23, 296–304. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A.; Malheiro, A.C.; Oliveira, A.A.; Moutinho-Pereira, J.; Jones, G.V. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int. J. Climatol. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Analysis of climate change indices in relation to wine production: A case study in the Douro region (Portugal). Bio Web Conf. 2017, 9. [Google Scholar] [CrossRef]
- Martins, J.; Fraga, H.; Fonseca, A.; Santos, J.A. Climate Projections for Precipitation and Temperature Indicators in the Douro Wine Region: The Importance of Bias Correction. Agronomy 2021, 11, 990. [Google Scholar] [CrossRef]
- IVV Instituto da Vinha e do Vinho. Estatísticas; IVV Instituto da Vinha e do Vinho: Lisbon, Portugal, 2025.
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 1998, 18, 311–346. [Google Scholar] [CrossRef]
- Fraga, H.; Guimarães, N.; Freitas, T.R.; Malheiro, A.C.; Santos, J.A. Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy 2022, 12, 350. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Poloczanska, E.S.; Mintenbeck, K.; Tignor, M.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC Summary for Policymakers. In Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; pp. 3–33. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergman, T.; Bernardello, R.; Boussetta, S.; Caron, L.P.; Carver, G.; et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002010. [Google Scholar] [CrossRef]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.S.; Brüggemann, N.; Haak, H.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- FAO & IIASA. Harmonized World Soil Database Version 2.0.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023. [Google Scholar] [CrossRef]
- GTOPO30. Global 30 Arc-Second Elevation (GTOPO30), USGS Products. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30 (accessed on 1 April 2025).
- Beven, K. Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. Hydrol. Process. 1995, 9, 507–525. [Google Scholar] [CrossRef]
- Ringrose-Voase, A.; Young, R.; Paydar, Z.; Huth, N.; Bernardi, A.; Cresswell, H.; Keating, B.A.; Scott, J.; Stauffacher, M.; Banks, R. Deep Drainage Under Different Land Uses in the Liverpool Plains Catchment; NSW Agriculture: Canberra, Australia, 2003. [Google Scholar]
- Chapman, D.C.; Lake, D.W. Computing Runoff. In New York Standards and Specifications for Erosion and Sediment Control; New York State Department of Environmental Conservation: New York, NY, USA, 2003; 406p. [Google Scholar]
- Ritchie, J.T. A User-Orientated Model of the Soil Water Balance in Wheat. In Wheat Growth and Modelling; Day, W., Atkin, R.K., Eds.; NATO ASI Science; Springer: New York, NY, USA, 1985; Volume 86, pp. 293–305. [Google Scholar]
Model | Institution | Country | Original Resolution | Reference |
---|---|---|---|---|
CanESM5 | Canadian Centre for Climate Modelling and Analysis | Canada | 250 km | [57] |
EC-Earth3 | EC-Earth Consortium | Europe | 80 km | [58] |
IPSL-CM6A-LR | Institut Pierre-Simon Laplace | France | 160 km | [59] |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology | Germany | 80 km | [60] |
Parameter | STICS Parameter | Dataset/Calculation |
---|---|---|
Albedo of the dry soil | albedo | [63] |
Clay content in the surface layer (%) | Argi | HWSD |
Cumulative evaporation limit (mm) | q0 | [64] |
Dominant soil unit (FAO) | * | HWSD |
Elevation (m) | * | GTOPO30 |
Fraction of runoff in soil | ruisolnu | [65] |
Limestone content in the surface (%) | Calc | HWSD |
Orientation | * | GTOPO30 |
Permeability classes | * | [66] |
Slope (%) | * | GTOPO30 |
Soil calcium carbonate content | * | HWSD |
Soil depth | * | HWSD |
Soil pH | pH | HWSD |
Texture class | * | HWSD |
USDA Texture | * | HWSD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraga, H.; Serra, E.; Guimarães, N.; Crespo, N.; Fernandes, A.; Menz, C.; Santos, J.A. Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology. Plants 2025, 14, 2466. https://doi.org/10.3390/plants14162466
Fraga H, Serra E, Guimarães N, Crespo N, Fernandes A, Menz C, Santos JA. Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology. Plants. 2025; 14(16):2466. https://doi.org/10.3390/plants14162466
Chicago/Turabian StyleFraga, Helder, Emanuele Serra, Nathalie Guimarães, Nazaret Crespo, António Fernandes, Christoph Menz, and João A. Santos. 2025. "Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology" Plants 14, no. 16: 2466. https://doi.org/10.3390/plants14162466
APA StyleFraga, H., Serra, E., Guimarães, N., Crespo, N., Fernandes, A., Menz, C., & Santos, J. A. (2025). Best- and Worst-Case Scenarios for the Douro Winemaking Region: Dynamic Crop Modelling and Ensemble Projections for Yield, Alcohol Content, and Phenology. Plants, 14(16), 2466. https://doi.org/10.3390/plants14162466