Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,298)

Search Parameters:
Keywords = anty-VEGF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1674 KiB  
Article
Enhanced Anticancer Activity of Atractylodin-Loaded Poly(lactic-co-glycolic Acid) Nanoparticles Against Cholangiocarcinoma
by Tullayakorn Plengsuriyakarn, Luxsana Panrit and Kesara Na-Bangchang
Polymers 2025, 17(15), 2151; https://doi.org/10.3390/polym17152151 - 6 Aug 2025
Abstract
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea [...] Read more.
Cholangiocarcinoma (CCA) is highly prevalent in the Greater Mekong sub-region, especially northeastern Thailand, where infection with the liver fluke Opisthorchis viverrini is a major etiological factor. Limited therapeutic options and the absence of reliable early diagnosis tools impede effective disease control. Atractylodes lancea (Thunb.) DC.—long used in Thai and East Asian medicine, contains atractylodin (ATD), a potent bioactive compound with anticancer potential. Here, we developed ATD-loaded poly(lactic co-glycolic acid) nanoparticles (ATD PLGA NPs) and evaluated their antitumor efficacy against CCA. The formulated nanoparticles had a mean diameter of 229.8 nm, an encapsulation efficiency of 83%, and exhibited biphasic, sustained release, reaching a cumulative release of 92% within seven days. In vitro, ATD-PLGA NPs selectively reduced the viability of CL-6 and HuCCT-1 CCA cell lines, with selectivity indices (SI) of 3.53 and 2.61, respectively, outperforming free ATD and 5-fluorouracil (5-FU). They suppressed CL-6 cell migration and invasion by up to 90% within 12 h and induced apoptosis in 83% of cells through caspase-3/7 activation. Micronucleus assays showed lower mutagenic potential than the positive control. In vivo, ATD-PLGA NPs dose-dependently inhibited tumor growth and prolonged survival in CCA-xenografted nude mice; the high-dose regimen matched or exceeded the efficacy of 5-FU. Gene expression analysis revealed significant downregulation of pro-tumorigenic factors (VEGF, MMP-9, TGF-β, TNF-α, COX-2, PGE2, and IL-6) and upregulation of the anti-inflammatory cytokine IL-10. Collectively, these results indicate that ATD-PLGA NPs are a promising nanotherapeutic platform for targeted CCA treatment, offering improved anticancer potency, selectivity, and safety compared to conventional therapies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Multifunctional Dermatological Effects of Whole-Plant Bassia scoparia Extract: Skin Repair and Protection
by Seogyun Jeong, Hye-Been Kim, Dong-Geol Lee, Eunjin Park, Seoyeon Kyung, Seunghyun Kang, Dayeon Roo, Sang Hyun Moh, Sung Joo Jang, Jihyeon Jang, HyungWoo Jo and Sanghun Lee
Curr. Issues Mol. Biol. 2025, 47(8), 617; https://doi.org/10.3390/cimb47080617 - 4 Aug 2025
Abstract
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap [...] Read more.
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap regarding the medicinal properties of non-fruit parts. The diverse skin benefits of WPBS, including its anti-photoaging, moisturizing, wound healing, anti-inflammatory, and anti-angiogenic effects, were investigated. The WPBS extract enhanced the viability of keratinocytes (HaCaT) without inducing cytotoxic effects. WPBS significantly reduced matrix metalloproteinase-1 (MMP-1) levels and increased collagen type I alpha 1 (COL1A1) levels (p < 0.01) in fibroblasts exposed to ultraviolet B (UVB) radiation, indicating strong anti-photoaging effects. WPBS upregulated skin hydration markers such as aquaporin-3 (AQP3) and hyaluronan synthase-3 (HAS3) and effectively accelerated fibroblast wound closure compared to the positive control. Furthermore, WPBS substantially downregulated the expression of inflammatory (COX-2 and IL-1β) and angiogenic markers (VEGF). Transcriptome analysis (RNA-seq) confirmed that WPBS suppressed inflammation-related and UV-induced gene expression pathways. Overall, these findings expand the therapeutic scope of B. scoparia beyond its traditional fruit use and suggest that WPBS is a promising botanical ingredient for various skin applications. Full article
Show Figures

Figure 1

35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 198
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

16 pages, 7401 KiB  
Article
Sitagliptin Mitigates Diabetic Cardiomyopathy Through Oxidative Stress Reduction and Suppression of VEGF and FLT-1 Expression in Rats
by Qamraa H. Alqahtani, Tahani A. ALMatrafi, Amira M. Badr, Sumayya A. Alturaif, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Biomolecules 2025, 15(8), 1104; https://doi.org/10.3390/biom15081104 - 30 Jul 2025
Viewed by 302
Abstract
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s [...] Read more.
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s potential as a therapeutic agent, functioning not only to control blood sugar levels but also to enhance vascular health and strengthen cardiac resilience in diabetes. The investigation focused on alterations in the vascular endothelial growth factor (VEGF) and its receptor-1 (FLT-1) signaling pathways, as well as its potential to suppress inflammation and oxidative stress. A number of rats received a single dose of streptozotocin (STZ) 55 mg/kg (i.p.) to induce DM. Sitagliptin was administered orally (100 mg/kg/90 days) to normal and diabetic rats, after which samples were collected for investigation. Sitagliptin significantly mitigated weight loss in diabetic rats. Its administration significantly reduced blood glucose levels and improved serum troponin I and CK-MB levels. Heart sections from diabetic rats showed a marked increase in mTOR, VEGF, and FLT-1 immune reaction, while sitagliptin-treated diabetic rats’ heart sections showed moderate immune reactions. Sitagliptin’s protective effect was also associated with reduced inflammation, and apoptotic markers. In conclusion, Sitagliptin is suggested to offer beneficial effects on the vascular health of cardiac blood vessels, thereby potentially reducing myocardial stress in diabetic patients. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Diseases)
Show Figures

Graphical abstract

13 pages, 1280 KiB  
Article
Seven-Year Outcomes of Aflibercept in Neovascular Age-Related Macular Degeneration in a Teaching Hospital Setting
by Antoine Barloy, Florent Boulanger, Benjamin Jany and Thi Ha Chau Tran
J. Clin. Transl. Ophthalmol. 2025, 3(3), 14; https://doi.org/10.3390/jcto3030014 - 30 Jul 2025
Viewed by 312
Abstract
Background: In clinical practice, visual outcomes with anti-VEGF therapy may be worse than those observed in clinical trials. In this study, we aim to investigate the long-term outcomes of neovascularization treated with intravitreal aflibercept injections (IAI) in a teaching hospital setting. Methods: This [...] Read more.
Background: In clinical practice, visual outcomes with anti-VEGF therapy may be worse than those observed in clinical trials. In this study, we aim to investigate the long-term outcomes of neovascularization treated with intravitreal aflibercept injections (IAI) in a teaching hospital setting. Methods: This is a retrospective, single-center study including 81 nAMD patients (116 eyes), those both newly diagnosed and switched from ranibizumab. All patients had a follow-up duration of at least seven years. Treatment involved three monthly injections followed by either a pro re nata (PRN) or treat and extend regimen. Follow-up care was primarily conducted by training physicians. The primary endpoint was the change in best-corrected visual acuity (BCVA) over seven years. Secondary endpoints included central retinal thickness changes, qualitative OCT parameters, macular atrophy progression, injection frequency, and treatment adherence. Results: Among the 116 eyes, 52 (44.8%) completed the seven-year follow-up. Visual acuity improved by +2.1 letters in the overall population (+6.3 letters in treatment-naive eyes) after the loading phase but gradually declined, resulting in a loss of −12.3 letters at seven years. BCVA remained stable (a loss of fewer than 15 letters) in 57.7% of eyes. Central retinal thickness (CRT) decreased significantly during follow-up in both naive and switcher eyes. Macular atrophy occurred in 94.2% of eyes, progressing from 1.42 mm2 to 8.55 mm2 over seven years (p < 0.001). The mean number of injections was 4.1 ± 1.8 during the first year and 3.7 per year thereafter. Advanced age at diagnosis was a risk factor for loss to follow-up, with bilaterality being a protective factor against loss to follow-up (p < 0.05). Conclusions: This study highlights the challenges faced by a retina clinic in a teaching hospital. Suboptimal functional and anatomical outcomes in real life may derive from insufficient patient information and inconsistent monitoring, which contributes to undertreatment and affects long-term visual outcomes. It also raises concerns about supervision in a teaching hospital which needs to be improved. Full article
Show Figures

Figure 1

9 pages, 323 KiB  
Article
Pars Plana Vitrectomy Combined with Anti-VEGF Injections as an Approach to Treat Proliferative Diabetic Retinopathy
by Rafał Leszczyński, Wojciech Olszowski, Marcin Jaworski, Aleksandra Górska, Anna Lorenc, Irmina Jastrzębska-Miazga and Krzysztof Pawlicki
J. Clin. Med. 2025, 14(15), 5349; https://doi.org/10.3390/jcm14155349 - 29 Jul 2025
Viewed by 304
Abstract
This study aimed to evaluate the impact of preoperative anti-VEGF injections on pars plana vitrectomy (PPV) outcomes in patients with proliferative diabetic retinopathy (PDR). Material and methods: We analysed 232 eyes with proliferative diabetic vitreoretinopathy treated with posterior vitrectomy. There were 112 women [...] Read more.
This study aimed to evaluate the impact of preoperative anti-VEGF injections on pars plana vitrectomy (PPV) outcomes in patients with proliferative diabetic retinopathy (PDR). Material and methods: We analysed 232 eyes with proliferative diabetic vitreoretinopathy treated with posterior vitrectomy. There were 112 women and 120 men. The patients were divided into two groups of 116 eyes each. In 116 eyes (study group), an anti-VEGF injection was administered 3 to 5 days before vitrectomy. The control eyes were not injected with anti-VEGF due to systemic contraindications to anti-VEGF treatment or lack of patient consent. All participants underwent pars plana vitrectomy with silicone oil injection. The oil was removed within 2–3 months after PPV. Results: At 2 years of observation, after removal of silicone oil, visual acuity (VA) was 0.24 ± 0.27 logMAR in the study and 0.37 ± 0.45 logMAR in the control group (p = 0.003). Intraocular pressure was 16.84 ± 6.25 mmHg in the study group and 17.78 ± 6.22 mmHg in the control group (p = 0.04). The mean duration of surgery was 47.62 ± 9.87 and 50.05 ± 9.41 min in the study and control groups, respectively (p = 0.02). The size of intraoperative haemorrhage was 0.97 ± 0.86 dd in the study group and 1.51 ± 1.22 dd in the control group (p = 0.003). The frequency of surgery-induced retinal breaks was 0.34 ± 0.56 in the study group and 0.56 ± 0.76 in the control group (p = 0.003). The recurrence rate of retinal detachment was 0.05 ± 0.22 in the study group and 0.1 ± 0.31 in the control group (p = 0.15). Conclusions: Preoperative anti-VEGF therapy shortens the duration of surgery, reduces complications, and improves long-term outcomes in terms of visual acuity and maintenance of normal eye function. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

14 pages, 1385 KiB  
Article
Is TGF-β Associated with Cytokines and Other Biochemical or Clinical Risk Parameters in Early-Onset CAD Patients?
by Bartosz Rakoczy, Violetta Dziedziejko, Krzysztof Safranow and Monika Rac
Biomedicines 2025, 13(8), 1840; https://doi.org/10.3390/biomedicines13081840 - 29 Jul 2025
Viewed by 326
Abstract
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to [...] Read more.
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to validate the diagnostic utility of TGF-β levels in relation to classical and molecular risk factors for CAD. Methods: The study group included 25 women and 75 men, all aged up to 55 and 50 years, respectively, who had been diagnosed with early-onset CAD. Fasting blood samples were taken to measure plasma levels of TGF-β, sCD36, PCSK9, TNF, VEGF, IL-6, and E-selectin using the ELISA method. Furthermore, a full lipid profile, apolipoproteins (Lp(a), ApoA1, and ApoB), C-reactive protein (hsCRP), and blood morphology were analyzed at the Central Hospital Laboratory. A physical examination was also performed. Results: Positive associations were observed between TGF-β concentration and TNF, platelet count, PTC, and triglyceride levels. TNF and platelet concentration were significant independent predictors of increased plasma TGF-β levels. None of the clinical parameters showed statistically significant associations with plasma TGF-β concentration. Conclusions: Our research has demonstrated that TGF-β levels, including circulating TNF, triglycerides, and platelets, are linked to specific biochemical risk factors in early-onset CAD cases. Full article
Show Figures

Figure 1

18 pages, 2876 KiB  
Article
The Secretome of Human Deciduous Tooth-Derived Mesenchymal Stem Cells Enhances In Vitro Wound Healing and Modulates Inflammation
by Thais Simião Payão, Vanessa Pellegrini, Joseane Morari, Gisele Mara Silva Gonçalves, Maria Carolina Ximenes de Godoy, Alessandra Gambero, Leonardo O. Reis, Lício Augusto Velloso, Eliana Pereira Araújo and Lívia Bitencourt Pascoal
Pharmaceutics 2025, 17(8), 961; https://doi.org/10.3390/pharmaceutics17080961 - 25 Jul 2025
Viewed by 350
Abstract
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) [...] Read more.
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) in promoting skin wound healing. Methods: After confirming the mesenchymal identity and multipotent differentiation potential of hDP-MSCs by using flow cytometry and histological staining, the effects of the secretome on human keratinocyte (HaCaT) cultures were evaluated. Results: Scratch assays, performed under high- and low-glucose conditions, demonstrated that the secretome significantly promoted keratinocyte migration and wound closure without compromising cell viability. Additionally, the secretome modulated the expression of key genes involved in inflammation and tissue regeneration, including IL-1β, TNF-α, TGF-β1, and VEGF-α, in a time-dependent manner. Under inflammatory conditions induced by lipopolysaccharide, co-treatment with the secretome significantly reduced TNF-α expression and increased TGF-β1 expression, suggesting an anti-inflammatory effect. Conclusions: These findings indicate the potential of the hDP-MSC-derived secretome as a promising cell-free therapeutic strategy capable of accelerating skin regeneration and modulating the inflammatory response during the wound healing process. Full article
Show Figures

Graphical abstract

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 342
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 500
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

20 pages, 311 KiB  
Article
Serum Concentrations of Vascular Endothelial Growth Factor in Polish Patients with Systemic Lupus Erythematosus Are Associated with Cardiovascular Risk and Autoantibody Profiles
by Katarzyna Fischer, Hanna Przepiera-Będzak, Marcin Sawicki, Maciej Brzosko and Marek Brzosko
J. Clin. Med. 2025, 14(14), 5133; https://doi.org/10.3390/jcm14145133 - 19 Jul 2025
Viewed by 419
Abstract
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals [...] Read more.
Background/Objectives: This study was conducted to analyze the associations between vascular endothelial growth factor (VEGF) serum concentrations and immunological biomarkers, inflammatory parameters, classical atherosclerosis risk factors, and cardiovascular manifestations in systemic lupus erythematosus (SLE) patients. Methods: The project included 83 individuals suffering from SLE, with 20 healthy individuals as controls. The serum levels of VEGF were determined through the ELISA method using R&D Systems tests. Laboratory markers, autoantibody profiles, traditional atherosclerotic risk factors, and organ manifestations were evaluated. Atherosclerotic changes were determined based on several indices including carotid intima-media thickness, ankle-brachial index and high resistance index assessments. Results: The reference range of serum VEGF concentrations was established based on the 25th and 75th percentiles obtained in the controls. High VEGF levels were significantly correlated with the presence of selected anti-phospholipid antibodies such as anti-prothrombin (OR = 10.7; 95%CI: 2.1–53.4) and anti-beta2 glycoprotein I (OR = 3.5; 95%CI: 1.1–10.8), as well as cardiac disorders (OR = 8.0; 95%CI: 1.6–39.5). On the other hand, low concentrations of VEGF were significantly related to lower frequencies of anti-double-stranded DNA antibodies (OR = 0.31; 95%CI: 0.11–0.91) and anti-endothelial cell antibodies (OR = 0.30; 95%CI: 0.11–0.85). Patients with low VEGF levels showed significantly reduced risks of atherosclerotic lesions (OR = 0.24; 95%CI: 0.04–0.99) and vasculitis development (OR = 0.17; 95%CI = 0.03–0.91). Conclusions: In conclusion, VEGF’s pathogenetic role in SLE and SLE-related atherothrombosis is manifested in close correlation with aPLs which may enhance their direct impact on endothelium. High VEGF levels are helpful for identifying cardiovascular risk in patients, while low concentrations indicate lower disease activity, as well as a lower risk of organ involvement. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
26 pages, 6869 KiB  
Review
The Long-Standing Problem of Proliferative Retinopathies: Current Understanding and Critical Cues
by Maurizio Cammalleri and Paola Bagnoli
Cells 2025, 14(14), 1107; https://doi.org/10.3390/cells14141107 - 18 Jul 2025
Viewed by 311
Abstract
Retinal ischemia is implicated in ocular diseases involving aberrant neovessel proliferation that characterizes proliferative retinopathies. Their therapy still remains confined to the intravitreal administration of anti-vascular endothelial growth factor (VEGF) medication, which is limited by side effects and progressive reduction in efficacy. Mimicking [...] Read more.
Retinal ischemia is implicated in ocular diseases involving aberrant neovessel proliferation that characterizes proliferative retinopathies. Their therapy still remains confined to the intravitreal administration of anti-vascular endothelial growth factor (VEGF) medication, which is limited by side effects and progressive reduction in efficacy. Mimicking neovascular diseases in rodents, although of great help for translating fundamental mechanistic findings and assessing therapeutic potential in humans, is limited by the rodent’s short life span, which prevents retinal vessel proliferation over time. However, the oxygen-induced retinopathy (OIR) model, which mimics retinopathy of prematurity, seems to meet some criteria that are common to proliferative retinopathies. The present review provides insight into preclinical models and their suitability to mimic proliferative retinopathies. Further considerations will be applied to emerging approaches and advanced methodologies for the management of proliferative retinopathies, leading to the identification of new therapeutic targets, including our contribution in the field. Major emphasis is given to the possibility of using systemic therapies either alone or in combination with intravitreal anti-VEGF administration to maximize clinical benefits by combining drugs with different modes of action. This review is concluded by an in-depth discussion on future advancements and a critical view of preclinical finding translatability. Despite the major effort of preclinical and clinical research to develop novel therapies, the blockade of VEGF activity still remains the only treatment for proliferative retinopathies for more than twenty years since its first therapeutic application. Full article
Show Figures

Graphical abstract

18 pages, 2563 KiB  
Article
The Potential Anti-Cancer Effects of Polish Ethanolic Extract of Propolis and Quercetin on Glioma Cells Under Hypoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Molecules 2025, 30(14), 3008; https://doi.org/10.3390/molecules30143008 - 17 Jul 2025
Viewed by 649
Abstract
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation [...] Read more.
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation and aggressive growth. Recent studies have indicated that natural products may hold potential as components of cancer therapy. Among these, Polish propolis and its active compound, quercetin, have demonstrated promising anti-cancer properties. The aim of this study was to evaluate the concentrations of selected cytokines—specifically IL-6, IL-9, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), interferon gamma-induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1)—produced by astrocytes of the CCF-STTG1 cell line. The cytotoxic effects of ethanolic extract of propolis (EEP) and quercetin were assessed using the MTT assay. Astrocytes were stimulated with lipopolysaccharide (LPS, 200 ng/mL) and/or IFN-α (100 U/mL), followed by treatment with EEP or quercetin (25–50 µg/mL) under hypoxic conditions for two hours. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine Kit. Our study demonstrated that Polish propolis and its component quercetin modulate the tumour microenvironment in vitro, primarily by altering the levels of specific cytokines. The HCA analysis revealed that IL-6 and MCP-1 formed a distinct cluster at the highest linkage distance (approximately 100% of Dmax), suggesting that their expression patterns are significantly different from those of the other cytokines and that they are more similar to each other than to the rest. PCA analysis showed that EEP-PL (50 μg/mL) with IFN-α and EEP-PL (50 μg/mL) with LPS exert similar activities on cytokine secretion by astrocytes. Similar effects were demonstrated for EEP-PL 50 μg/mL + LPS + IFN-α, EEP-PL 25 μg/mL + IFN-α and EEP-PL 25 μg/mL + LPS + IFN-α. Our findings suggest that Polish propolis and quercetin may serve as promising natural agents to support the treatment of stage IV malignant astrocytoma. Nonetheless, further research is needed to confirm these results. Full article
Show Figures

Figure 1

29 pages, 922 KiB  
Review
Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols
by Verónica Gómez-Jiménez, Raquel Burggraaf-Sánchez de las Matas and Ángel Luis Ortega
Antioxidants 2025, 14(7), 875; https://doi.org/10.3390/antiox14070875 - 17 Jul 2025
Viewed by 664
Abstract
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent [...] Read more.
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent early neuronal and microvascular damage. Emerging evidence highlights oxidative stress as a key driver of DR pathogenesis, disrupting the blood-retinal barrier (BRB), promoting neurodegeneration and angiogenesis. Advances in imaging, particularly optical coherence tomography angiography (OCTA), enable earlier detection of neurodegeneration and microvascular changes, underscoring DR as a neurovascular disorder. Polyphenols, such as resveratrol, curcumin, and pterostilbene, exhibit multitarget antioxidant, anti-inflammatory, and anti-angiogenic effects, showing promise in preclinical and limited clinical studies. However, their low bioavailability limits therapeutic efficacy. Nanotechnology-based delivery systems enhance drug stability, tissue targeting, and sustained release, offering potential for early intervention. Future strategies should integrate antioxidant therapies and precision diagnostics to prevent early irreversible retinal damage in diabetic patients. Full article
Show Figures

Figure 1

Back to TopTop