Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (405)

Search Parameters:
Keywords = antinutrition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 167
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 (registering DOI) - 1 Aug 2025
Viewed by 276
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 265
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

14 pages, 654 KiB  
Article
Effects of Natural Fermentation Time on Chemical Composition, Antioxidant Activities, and Phenolic Profile of Cassava Root Flour
by Oluwaseun Peter Bamidele
Appl. Sci. 2025, 15(15), 8494; https://doi.org/10.3390/app15158494 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
This study aimed to determine the impact of natural fermentation time on the chemical composition and antioxidant activities of cassava flour. Samples of flour were fermented for intervals of 12, 24, and 48 h and compared with the control (0 h). The results [...] Read more.
This study aimed to determine the impact of natural fermentation time on the chemical composition and antioxidant activities of cassava flour. Samples of flour were fermented for intervals of 12, 24, and 48 h and compared with the control (0 h). The results indicated clear differences in the chemical composition of these samples. The pH value was reduced, TTA increased, and TSS decreased. This is due to the action of lactic acid bacteria during fermentation. The TPC value also increased with fermentation time, achieving 2.95 mg GAE/g after 48 h, compared to 1.35 mg GAE/g initially. Antioxidant activities improved significantly; total antioxidant capacity surged from 23.50 µmol TE/g to 69.81 µmol TE/g over the 48 h fermentation period, based on ABTS, DPPH, and FRAP assays. Protein content also improved significantly, increasing from 1.82% to 3.10%, while the hydrogen cyanide content declined from 25.14 mg/100 g to 5.34 mg/100 g, signifying reduced nutritional risk. An increase in minerals was also noted, with calcium showing the highest concentration of 41.35 mg/100 g after 48 h of fermentation. These findings demonstrate the effectiveness of fermenting cassava flour by enhancing its chemical composition and antioxidant properties while lowering antinutrients, which improves its value in functional foods. Full article
Show Figures

Figure 1

20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 249
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

18 pages, 2437 KiB  
Article
Seed-Specific Silencing of Abundantly Expressed Soybean Bowman–Birk Protease Inhibitor Genes by RNAi Lowers Trypsin and Chymotrypsin Inhibitor Activities and Enhances Protein Digestibility
by Wonseok Kim, Sunhyung Kim and Hari B. Krishnan
Int. J. Mol. Sci. 2025, 26(14), 6943; https://doi.org/10.3390/ijms26146943 - 19 Jul 2025
Viewed by 285
Abstract
Soybean meal (SBM) is extensively used as a predominant protein source in animal feed. However, raw soybean cannot be directly utilized in animal feed, due to the presence of the Kunitz trypsin inhibitor (KTi) and the Bowman–Birk protease inhibitor (BBi). These antinutritional factors [...] Read more.
Soybean meal (SBM) is extensively used as a predominant protein source in animal feed. However, raw soybean cannot be directly utilized in animal feed, due to the presence of the Kunitz trypsin inhibitor (KTi) and the Bowman–Birk protease inhibitor (BBi). These antinutritional factors inhibit the digestive enzymes in animals, trypsin and chymotrypsin, resulting in poor animal performance. To inactivate the activity of protease inhibitors, SBM is subjected to heat processing, a procedure that can negatively impact the soybean protein quality. Thus, it would be beneficial to develop soybean varieties with little or no trypsin inhibitors. In this study, we report on the creation of experimental soybean lines with significantly reduced levels of Bowman–Birk protease inhibitors. RNA interference (RNAi) technology was employed to generate several transgenic soybean lines. Some of these BBi knockdown soybean lines showed significantly lower amounts of both trypsin and chymotrypsin inhibitor activities. Western blot analysis revealed the complete absence of BBi in selected RNAi-derived lines. RNA sequencing (RNAseq) analysis demonstrated a drastic reduction in the seed-specific expression of BBi genes in the transgenic soybean lines during seed development. Confocal fluorescence immunolabeling studies showed that the accumulation of BBi was drastically diminished in BBi knockdown lines compared to wild-type soybeans. The absence of BBi in the transgenic soybean did not alter the overall protein, oil, and sulfur amino acid content of the seeds compared to wild-type soybeans. The seed protein from the BBi knockdown lines were more rapidly hydrolyzed by trypsin and chymotrypsin compared to the wild type, indicating that the absence of BBi enhances protein digestibility. Our study suggests that these BBi knockdown lines could be a valuable resource in order for plant breeders to incorporate this trait into commercial soybean cultivars, potentially enabling the use of raw soybeans in animal feed. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

20 pages, 542 KiB  
Article
Elucidation of Nutritional Quality, Antinutrients, and Protein Digestibility of Dehulled and Malted Flours Produced from Three Varieties of Bambara Groundnut (Vigna subterranean)
by Mpho Edward Mashau, Thakhani Takalani, Oluwaseun Peter Bamidele and Shonisani Eugenia Ramashia
Foods 2025, 14(14), 2450; https://doi.org/10.3390/foods14142450 - 12 Jul 2025
Viewed by 404
Abstract
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This [...] Read more.
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This study investigated the impact of dehulling and malting on the nutritional composition, antinutritional factors, and protein digestibility of flours obtained from three BGN varieties (red, cream, and brown). Dehulling and malting significantly enhanced the moisture and protein content of BGN flours (dry basis), with values varying from 6.01% (control brown variety) to 8.71% (malted cream and brown varieties), and from 18.63% (control red variety) to 21.87% (dehulled brown), respectively. Dehulling increased the fat content from 5.82% (control red variety) to 7.84% (dehulled cream), whereas malting decreased the fat content. Nevertheless, malting significantly increased (p < 0.05) the fiber content from 4.78% (control cream) to 8.28% (malted brown variety), while dehulling decreased the fiber content. Both processing methods decreased the ash and carbohydrate contents of the BGN flours. Dehulling and malting significantly enhanced the amino acids of BGN flours, except for tryptophan and asparagine. Dehulling and malting notably increased the phosphorus, magnesium, potassium, and sulfur contents of the BGN flours, while calcium and zinc were reduced. Malting significantly enhanced the iron content of BGN flour, whereas dehulling reduced it. Both processing methods significantly enhanced palmitic, arachidic, and y-Linolenic acids. Nonetheless, processing methods significantly reduced phytic acid and oxalate, and dehulling achieved the most significant reductions. Dehulling and malting significantly enhanced the protein digestibility of the BGN flours from 69.38 (control red variety) to 83.29 g/100 g (dehulled cream variety). Overall, dehulling and malting enhanced the nutritional quality and decreased the antinutritional factors of BGN flours. Full article
Show Figures

Figure 1

23 pages, 990 KiB  
Review
Toward Sustainable Broiler Production: Evaluating Microbial Protein as Supplementation for Conventional Feed Proteins
by Daniela-Mihaela Grigore, Maria-Luiza Mircea and Elena Narcisa Pogurschi
Agriculture 2025, 15(14), 1486; https://doi.org/10.3390/agriculture15141486 - 10 Jul 2025
Viewed by 408
Abstract
The increasing demand for sustainable poultry production has urged the exploration of alternative feed strategies supporting animal performance and environmental goals. The first section outlines the protein requirements in broiler nutrition (19–25% crude protein) and the physiological importance of balanced amino acid profiles. [...] Read more.
The increasing demand for sustainable poultry production has urged the exploration of alternative feed strategies supporting animal performance and environmental goals. The first section outlines the protein requirements in broiler nutrition (19–25% crude protein) and the physiological importance of balanced amino acid profiles. Vegetal conventional protein sources are discussed in terms of their nutritional value (12.7–20.1 MJ/kg), limitations (antinutritional factors), and availability. Emerging trends in broiler nutrition highlight the integration of supplements and the need for innovative feed solutions as support for the improvement in broiler body weight and feed efficiency increase. Microbial protein sources: yeast biomass (41–60% of 100 g dry weight), microbial mixed cultures (32–76% of 100 g dry weight), and beer by-products, such as brewer’s spent yeast (43–52% of 100 g dry weight), offer promising nutritional profiles, rich in bioactive compounds (vitamin B complex, minerals, enzymes, and antioxidants), and may contribute to improved gut health, immunity, and feed efficiency when used as dietary supplements. The review also addresses the regulatory and safety considerations associated with the use of microbial protein in animal feed, emphasizing EU legislation and standards. Finally, recent findings on the impact of microbial protein supplementation on broiler growth performance, carcass traits, and overall health status are discussed. This review supports the inclusion of microbial protein sources as valuable co-nutrients that complement conventional feed proteins, contributing to more resilient and sustainable broiler production and broiler meat products. Full article
Show Figures

Figure 1

23 pages, 317 KiB  
Review
Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review
by Jim Kioko Katu, Tamás Tóth, Balázs Ásványi, Zoltán Hatvan and László Varga
Animals 2025, 15(13), 1957; https://doi.org/10.3390/ani15131957 - 3 Jul 2025
Viewed by 640
Abstract
The fermented feed used in broiler production has gained significant attention for its potential to improve growth performance, enhance gut health, and modulate gut microbiota. This review synthesized findings on the effects of both solid and liquid fermented feed in broilers. Fermentation processes [...] Read more.
The fermented feed used in broiler production has gained significant attention for its potential to improve growth performance, enhance gut health, and modulate gut microbiota. This review synthesized findings on the effects of both solid and liquid fermented feed in broilers. Fermentation processes enhance nutrient bioavailability; reduce anti-nutritional factors; and generate beneficial metabolites, such as short-chain fatty acids, which contribute to gut health. Incorporating fermented feed in broiler diets has been shown to improve weight gain, the feed conversion ratio, and nutrient absorption by promoting favorable gut morphology changes, including an increased villus height and villus height-to-crypt depth ratios. Additionally, fermented feed fosters a beneficial microbial environment by increasing lactic acid bacteria populations while reducing pathogenic microbes. Fermentation also modulates gut immunity by regulating cytokine production and stimulating immune cell activity. However, challenges such as inconsistent effects on feed intake and growth during the early production stages underscore the need for optimizing fermentation protocols tailored to broiler production systems. Although the implementation of liquid fermented feed presents logistical challenges, research suggests it can significantly improve feed digestibility. Advances in precision fermentation techniques and multi-strain inoculant use hold promise for further improving fermented feed efficacy. Future research should focus on assessing the long-term impacts, economic viability, and environmental sustainability of fermented feed in commercial poultry systems. Overall, fermented feed offers a promising strategy to enhance productivity and sustainability in broiler farming while reducing the reliance on conventional feed additives. This review reflects the body of knowledge at the time of writing. Full article
(This article belongs to the Section Poultry)
25 pages, 845 KiB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 483
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

23 pages, 3357 KiB  
Article
Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
by Hai-Xiang Zhou, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen and Jian-Cheng Zhang
Beverages 2025, 11(4), 99; https://doi.org/10.3390/beverages11040099 - 1 Jul 2025
Viewed by 574
Abstract
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to [...] Read more.
Tea has become one of the most popular drinks worldwide thanks to its pleasant sensory attributes and diverse health benefits. However, tannin-rich compositions have several negative effects and significantly impact the quality of tea beverages. Among various detannification methods, tannase treatment appears to be the most secure and environmentally friendly strategy. Although numerous microbial tannases have been identified and used in food processing, they are predominantly mesophilic with compromised heat tolerance, which limit their application in high-temperature tea extraction processing. Computer-assisted rational design and site-directed mutagenesis has emerged as a promising strategy in enzyme engineering to improve the thermostability of industrial enzymes. Nevertheless, relevant studies for tannase thermostability improvement remain lacking. In the present study, a novel thermophilic tannase called TanPL1 from marine fungus Penicillium longicatenatum strain SM102 was expressed in the food-grade host Yarrowia lipolytica. After purification and characterization, the thermostability of this enzyme was improved through site-directed mutagenesis guided by computer-aided rational design and molecular dynamics simulations. Then the thermostable mutant MuTanPL1 was applied in green tea processing for both polyphenol extraction and ester catechin hydrolysis. The tannase yield and specific activity values of 166.4 U/mL and 1059.3 U/mg, respectively, were achieved. The optimum pH and temperature of recombinant TanPL1 were determined to be 5.5 and 55 °C, respectively, and the enzyme exhibited high activity toward various gallic acid ester substrates. The site-directed mutagenesis method successfully generated a single-point mutant, MuTanPL1, with significantly enhanced thermostability and a higher optimum temperature of 60 °C. After 2 h of detannification by MuTanPL1, nearly all gallated catechins in green tea infusion were biotransformed. This resulted in a 202.4% and 12.1-fold increase in non-ester catechins and gallic acid levels, respectively. Meanwhile, the quality of the tea infusion was also markedly improved. Sensory evaluation and antioxidant activity assays revealed notable enhancements in these properties, while turbidity was reduced considerably. Additionally, the α-amylase inhibition activity of the tannase-treated tea infusion declined from 50.49% to 8.56%, revealing a significantly lower anti-nutritional effect. These findings suggest that the thermostable tannase MuTanPL1 holds strong application prospects in tea beverage processing. Full article
Show Figures

Figure 1

17 pages, 2243 KiB  
Article
Phytochemical Analysis and Chymotrypsin Inhibitory Potential of Galium sp. and Solidago sp. via Effect-Directed HPTLC Bioassay
by Bartosz Rył and Izabela Jasicka-Misiak
Molecules 2025, 30(13), 2746; https://doi.org/10.3390/molecules30132746 - 26 Jun 2025
Viewed by 378
Abstract
Chymotrypsin inhibitors were initially considered mainly as anti-nutritional factors. However, the potential for their use as therapeutics has been recognized, particularly in the control of cancer, neurodegenerative diseases, and inflammatory processes. The search for new, effective, and safe chymotrypsin inhibitors has become important [...] Read more.
Chymotrypsin inhibitors were initially considered mainly as anti-nutritional factors. However, the potential for their use as therapeutics has been recognized, particularly in the control of cancer, neurodegenerative diseases, and inflammatory processes. The search for new, effective, and safe chymotrypsin inhibitors has become important not only for food and feed safety reasons, but also in the search for new compounds with potential for use in the pharmaceutical industry. Oxidative stress is also an integral etiological factor in the development of the aforementioned pathological conditions. Antioxidants supplied with food can have an impact on reducing the probability of developing these diseases. Herbaceous plants are a valuable reservoir of biologically active chemical compounds, which can show both inhibitory effects against a number of enzymatic reactions and have antioxidant activity. The compounds found within them are also often characterized by higher bioavailability and safety than their synthetic analogs. In the present study, phytochemical characterization of plant materials Galium aparine L., Galium verum L., Solidago virgaurea L. and Solidago canadensis L. was performed, in order to search for new, potential substances with chymotrypsin inhibitor and antioxidant properties. Antioxidant and inhibitory activities against chymotrypsin were determined using effect-directed HPTLC. The total content of phenolic compounds and flavonoids and antioxidant activity were also determined in UV-Vis spectrophotometric tests. Both plant species showed antioxidant and chymotrypsin inhibitory activity. Among the methanol and methanol:water extracts, the extracts from Solidago sp. showed stronger inhibitory and antioxidant activity. However, in the case of dichloromethane extracts, Galium aparine inhibited chymotrypsin activity in a stronger manner than Solidago sp. The results indicate the application potential of compounds obtained from these plants as chymotrypsin inhibitors and antioxidant agents. Full article
Show Figures

Figure 1

14 pages, 1031 KiB  
Article
Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances
by Mohammad Moinul Islam, Kadambot H. M. Siddique and Zakaria M. Solaiman
Sustainability 2025, 17(13), 5844; https://doi.org/10.3390/su17135844 - 25 Jun 2025
Viewed by 554
Abstract
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an [...] Read more.
Hemp (Cannabis sativa L.) seeds have been essential for human nutrition for millennia. The products and by-products of hemp seeds are gaining popularity nowadays as food, feed and medicine for their high nutritional and nutraceutical properties. In parallel, concerns about phytate, an antinutritional compound limiting nutrient bioavailability in hemp seeds and seed meal are rising. Hemp seeds contain an array of nutrients, but their bioavailability is mostly unknown. Here, we report nutrient and phytate concentrations and phytate contents in source seeds and multiplied seeds of seven industrial hemp varieties. We estimated the bioavailability of specific nutrients based on calculated molar ratios of phytate to minerals. Seed multiplication was carried out in a phytotron using a compost-based growth medium. Five macronutrients (P, K, Mg, S, Ca), four micronutrients (Fe, Mn, Zn, Cu) and Cr were measured in seeds using ICP-OES. Seed phytate was determined using a UV-visible spectrophotometer rapid colourimetric assay. The results revealed significant differences between seven industrial hemp varieties for most macro- and micronutrient concentrations (not Fe), phytate concentration and content and phytate-to-mineral molar ratios in both source and multiplied seeds. Multiplied hemp seeds had higher K, Mn and Zn and, lower Cr and phytate concentrations and lower phytate content than source seeds. Considering nutrient bioavailability, Ca and Fe are non-bioavailable, and Zn is bioavailable in hemp seeds. Ferimon has increased Zn bioavailability in source and multiplied seeds, indicating the variety’s potential for seed production in Western Australia. Full article
Show Figures

Figure 1

21 pages, 3677 KiB  
Article
Incorporation of Protein Hydrolysate into Rapeseed Meal-Based Materials to Improve Flexibility
by Sara Aquilia, Claudia Bello, Michele Pinna, Sabrina Bianchi, Walter Giurlani, Francesco Ciardelli, Luca Rosi and Anna Maria Papini
Polymers 2025, 17(13), 1740; https://doi.org/10.3390/polym17131740 - 22 Jun 2025
Viewed by 704
Abstract
This study investigates the potential of rapeseed meal (RM), a protein-rich by-product of the rapeseed oil industry, as a raw material for the development of renewable materials. Due to the presence of antinutritional compounds, rapeseed meal is underutilized, primarily in low-value applications such [...] Read more.
This study investigates the potential of rapeseed meal (RM), a protein-rich by-product of the rapeseed oil industry, as a raw material for the development of renewable materials. Due to the presence of antinutritional compounds, rapeseed meal is underutilized, primarily in low-value applications such as animal feed. In this work, rapeseed meal protein hydrolysates were enzymatically obtained and incorporated as plasticizers into rapeseed meal-based materials to improve their mechanical properties, water permeability, and thermal stability. Collagen hydrolysate has also been utilized as a low-cost additive to further enhance the material performance. The glycerol content was reduced to address permeability and migration issues associated with hydrophilic plasticizers. The results demonstrated that the incorporation of hydrolysates into rapeseed meal-based materials modulated thermal stability, water permeability, and mechanical properties—particularly elongation at break and flexibility. The latter increased proportionally with the hydrolysate content of RM-based materials. Additionally, aerobic biodegradation behavior, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) supported the material’s favorable performance characteristics, highlighting the potential of rapeseed meal as a viable, biodegradable alternative for sustainable materials in industrial applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

43 pages, 2332 KiB  
Review
Application of Microorganisms for the Valorization of Side-Products of Rapeseed De-Oiling
by Michal Jacek Binczarski, Justyna Zuberek, Justyna Fraczyk, Beata Kolesinska, Milivoj Radojčin, Ivan Pavkov, Ewa Wiktorowska-Sowa, Jan Piotrowski, Zbigniew Jerzy Kaminski and Izabela Alina Witonska
Biomolecules 2025, 15(7), 917; https://doi.org/10.3390/biom15070917 - 22 Jun 2025
Viewed by 715
Abstract
The increasing demand for sustainable agriculture and environmental protection has prompted the exploration of innovative methods to valorize byproducts from rapeseed oil production. This review focuses on the application of microorganisms as a promising approach to transforming rapeseed de-oiling residues, such as cake [...] Read more.
The increasing demand for sustainable agriculture and environmental protection has prompted the exploration of innovative methods to valorize byproducts from rapeseed oil production. This review focuses on the application of microorganisms as a promising approach to transforming rapeseed de-oiling residues, such as cake and meal, into valuable products. This review discusses traditional and modern methods of rapeseed oil extraction, the composition and challenges posed by rapeseed byproducts, and the presence of antinutritional components such as glucosinolates, erucic acid, and phytic acid. Microbial applications, including the production of industrial enzymes, enhanced digestibility, and the neutralization of antinutritional factors, are examined as key solutions for waste valorization. Additionally, the role of microbial consortia and genetic modification in optimizing transformation processes is discussed. This review underscores the potential of microorganisms in creating eco-friendly, scalable technologies that contribute to resource efficiency and environmental sustainability in the agricultural and biotechnology sectors. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

Back to TopTop