Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Strains, and Media
2.2. Bioinformatics Analysis of the TanPL1 Sequence
2.3. Expression and Purification of Recombinant Tannase TanPL1
2.4. Quantification of Tannase Activity
2.5. Effects of Temperature and pH on TanPL1 Activity and Stability
2.6. Tannase-Mediated Degradation of Gallic Acid Esters
2.7. Rational Design and Site-Directed Mutagenesis of TanPL1
2.8. Extraction and Tannase Treatment of Green Tea
2.9. Determination of the Total Polyphenol, Catechin, and GA Content
2.10. Measurements of pH and Turbidity
2.11. Sensory Evaluation of Green Tea Infusions
2.12. Assessment of Antioxidant Capacity
2.13. Determination of α-Amylase Inhibitory Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. Sequence Analysis of TanPL1
3.2. Secretory Expression and Purification of Recombinant TanPL1
3.3. Effects of Temperature and pH on TanPL1 Activity and Stability
3.4. Substrate Specificity and Degradation Product Analysis
3.5. Rational Design and Site-Directed Mutagenesis of TanPL1
3.6. Effects of Tannase MuTanPL1 Application in Green Tea Infusion Extraction/Hydrolysis
3.6.1. Effects of Tannase-Assisted Extraction/Hydrolysis on the Total Phenolic Content and Catechin Composition
3.6.2. Improvement of Tea Infusion Quality Through Tannase-Assisted Extraction/Hydrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TFA | Trifluoroacetic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
MG | Methyl gallate |
PG | Propyl gallate |
TA | Tannic acid |
EGCG | Epigallocatechin gallate |
EGC | Epigallocatechin |
ECG | Epicatechin gallate |
EC | Epicatechin |
GCG | Gallocatechin gallate |
GC | Gallocatechin |
CG | Catechin gallate |
C | Catechin |
GA | Gallic acid |
HPLC | High-performance liquid chromatography |
RMSF | Root mean square fluctuation |
MD | Molecular dynamics |
SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
Mw | Molecule weight |
pI | Isoelectric point |
NCBI | National Center of Biotechnology Information |
References
- Yu, S.D.; Zhang, J.H. Reinventing a tradition: East Asian tea cultures in the contemporary world. Asian J. Soc. Sci. 2022, 50, 167–170. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, M.; Jiang, H.; Wang, W.; Huang, J.; Ye, S.; Chen, Y.; Liu, S.; Liu, J. Theaflavins are improved by the oxidation of catechins in tannase treatment during black tea fermentation. Molecules 2025, 30, 452. [Google Scholar] [CrossRef]
- Chen, Z.M.; Lin, Z. Tea and human health: Biomedical functions of tea active components and current issues. J. Zhejiang Univ. B 2015, 16, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhang, Y.H.; Zhang, F.; Yang, Q.M.; Weng, H.F.; Xiao, Q.; Xiao, A.F. Thermostable tannase from Aspergillus niger and its application in the enzymatic extraction of green tea. Molecules 2020, 25, 952. [Google Scholar] [CrossRef]
- Kim, H.S.; Jeon, D.Y.; Javaid, H.M.A.; Sahar, N.E.; Lee, H.N.; Hong, S.J.; Huh, J.Y.; Kim, Y.M. Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Enzym. Microb. Technol. 2020, 135, 109496. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.H.; Hiipakka, R.A.; Liao, S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000, 141, 980–987. [Google Scholar] [CrossRef]
- Kumar, M.; Mehra, R.; Yogi, R.; Singh, N.; Salar, R.K.; Saxena, G.; Rustagi, S. A novel tannase from Klebsiella pneumoniae KP715242 reduces haze and improves the quality of fruit juice and beverages through detannification. Front. Sustain. Food Syst. 2023, 7, 1173611. [Google Scholar] [CrossRef]
- Garcia, D.E.; Glasser, W.G.; Pizzi, A.; Paczkowski, S.P.; Laborie, M.P. Modification of condensed tannins: From polyphenol chemistry to materials engineering. New J. Chem. 2016, 40, 36–49. [Google Scholar] [CrossRef]
- Govindarajan, R.K.; Revathi, S.; Rameshkumar, N.; Krishnan, M.; Kayalvizhi, N. Microbial tannase: Current perspectives and biotechnological advances. Biocatal. Agric. Biotechnol. 2016, 6, 168–175. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Q.; McKinstry, W.J.; Ren, B. Characterization of a tannin acyl hydrolase from Streptomyces sviceus with substrate preference for digalloyl ester bonds. Appl. Microbiol. Biotechnol. 2015, 99, 2663–2672. [Google Scholar] [CrossRef]
- Tang, Z.; Shi, L.; Liang, S.; Yin, J.; Dong, W.; Zou, C.; Xu, Y. Recent advances of tannase: Production, characterization, purification, and application in the tea industry. Foods 2025, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Aharwar, A.; Parihar, D.K. Talaromyces verruculosus tannase immobilization, characterization, and application in tea infusion treatment. Biomass Conv. Bioref. 2023, 13, 261–272. [Google Scholar] [CrossRef]
- Cao, Q.; Zou, C.; Zhang, Y.; Du, Q.; Yin, J.; Shi, J.; Xue, S.; Xu, Y. Improving the taste of autumn green tea with tannase. Food Chem. 2019, 277, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Chu, S.; Yan, L.; Chen, C. Effect of tannase treatment on protein-tannin aggregation and sensory attributes of green tea infusion. Lwt Food Sci. Technol. 2009, 42, 338–342. [Google Scholar] [CrossRef]
- Gong, X.; Li, Y.; Qu, H. Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: A case study of danshen injection. Molecules 2014, 19, 18705–18720. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Fathy, S.A.; Rashad, M.M.; Ezz, M.K.; Mohammed, A.T. Purification and characterization of a novel tannase produced by Kluyveromyces marxianus using olive pomace as solid support, and its promising role in gallic acid production. Int. J. Biol. Macromol. 2018, 107, 2342–2350. [Google Scholar] [CrossRef]
- Aguilar, C.N.; Gutierrez-Sanchez, G. Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 2001, 7, 373–382. [Google Scholar] [CrossRef]
- Fathy, S.A.; Mahmoud, A.E.; Rashad, M.M.; Ezz, M.K.; Mohammed, A.T. Improving the nutritive value of olive pomace by solid state fermentation of Kluyveromyces marxianus with simultaneous production of gallic acid. Int. J. Recycl. Org. Waste Agric. 2018, 7, 135–141. [Google Scholar] [CrossRef]
- Jana, A.; Halder, S.K.; Banerjee, A.; Paul, T.; Pati, B.R.; Mondal, K.C.; Mohapatra, P.K.D. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: A molecular advancement. Bioresour. Technol. 2014, 157, 327–340. [Google Scholar] [CrossRef]
- Lekha, P.K.; Lonsane, B.K. Production and application of tannin acyl hydrolase: State of the art. Adv. Appl. Microbiol. 1997, 44, 215–260. [Google Scholar]
- Lu, M.J.; Chen, C. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 2008, 41, 130–137. [Google Scholar] [CrossRef]
- Wang, J.Q.; Hu, X.F.; Du, Q.Z.; Zeng, L.; Wang, S.Y.; Yin, J.F.; Xu, Y.Q. Effect of tannase on sediment formation in green tea infusion. J. Food Meas. Charact. 2020, 14, 1957–1965. [Google Scholar] [CrossRef]
- Ni, H.; Chen, F.; Jiang, Z.D.; Cai, M.Y.; Yang, Y.F.; Xiao, A.F.; Cai, H.N. Biotransformation of tea catechins using Aspergillus niger tannase prepared by solid state fermentation on tea byproduct. Lwt Food Sci. Technol. 2015, 60, 1206–1213. [Google Scholar] [CrossRef]
- Osipov, D.; Matys, V.Y.; Nemashkalov, V.; Rozhkova, A.; Shashkov, I.; Satrutdinov, A.; Kondratyeva, E.; Sinitsyn, A. Cloning, isolation, and properties of a new recombinant tannase from the Aspergillus niger fungus. Appl. Biochem. Microbiol. 2022, 58, 958–965. [Google Scholar] [CrossRef]
- Hong, Y.H.; Jung, E.Y.; Park, Y.; Shin, K.S.; Kim, T.Y.; Yu, K.W.; Chang, U.J.; Suh, H.J. Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts. Biosci. Biotechnol. Biochem. 2013, 77, 22–29. [Google Scholar] [CrossRef]
- Gonçalves, H.B.; Riul, A.J.; Terenzi, H.F.; Jorge, J.A.; Guimarães, L.H.S. Extracellular tannase from Emericella nidulans showing hypertolerance to temperature and organic solvents. J. Mol. Catal. B Enzym. 2011, 71, 29–35. [Google Scholar] [CrossRef]
- Jana, A.; Maity, C.; Halder, S.K.; Das, A.; Pati, B.R.; Mondal, K.C.; Das Mohapatra, P.K. Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2. Biochem. Eng. J. 2013, 77, 161–170. [Google Scholar] [CrossRef]
- Guo, J.; Rao, Z.; Yang, T.; Man, Z.; Xu, M.; Zhang, X.; Yang, S.T. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzym. Microb. Technol. 2015, 77, 54–60. [Google Scholar] [CrossRef]
- Xu, K.; Fu, H.; Chen, Q.; Sun, R.; Li, R.; Zhao, X.; Zhou, J.; Wang, X. Engineering thermostability of industrial enzymes for enhanced application performance. Int. J. Biol. Macromol. 2025, 291, 139067. [Google Scholar] [CrossRef]
- Zong, Z.; Gao, L.; Cai, W.; Yu, L.; Cui, C.; Chen, S.; Zhang, D. Computer-assisted rational modifications to improve the thermostability of β-glucosidase from Penicillium piceum H16. Bioenerg. Res. 2015, 8, 1384–1390. [Google Scholar] [CrossRef]
- Liu, L.; Guo, J.; Zhou, X.F.; Li, Z.; Zhou, H.X.; Song, W.Q. Characterization and secretory expression of a thermostable tannase from Aureobasidium melanogenum T9: Potential candidate for food and agricultural industries. Front. Bioeng. Biotechnol. 2022, 9, 769816. [Google Scholar] [CrossRef]
- Gietz, R.D.; Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2, 31–34. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–4254. [Google Scholar] [CrossRef]
- Teng, Z.; Pan, X.; Liu, Y.; You, J.; Zhang, H.; Zhao, Z.; Qiao, Z.; Rao, Z. Engineering serine hydroxymethyltransferases for efficient synthesis of L-serine in Escherichia coli. Bioresour. Technol. 2024, 393, 130153. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, T.; Cui, Y.; Wu, B. Structure-based self-supervised learning enables ultrafast protein stability prediction upon mutation. Innovation 2025, 6, 100750. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.–The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Yin, J.F.; Chen, J.X.; Wang, F.; Du, Q.Z.; Jiang, Y.W.; Xu, Y.Q. Improving the sweet aftertaste of green tea infusion with tannase. Food Chem. 2016, 192, 470–476. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Madzak, C. Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering. Appl. Microbiol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef]
- Afolayan, T.V.; Adah, M.E.; Ibidapo, O.I.; Orotope, M.O.; Orji, F.A.; Famotemi, A.C.; Ehiwuogu-Onyibe, J.; Lawal, A.K. Screening and optimization of culture conditions for local production of tannase from fungal species. Trop. J. Nat. Prod. Res. 2021, 4, 1178–1181. [Google Scholar]
- Amanda, R.D.S.; Gouveia, M.J.; Tonny, C.C.L.; Aparecida Moreira, K.; Sandra, A.D.A. Production, Characterization and application of a thermostable tannase from Pestalotiopsis guepinii URM 7114. Food Technol. Biotechnol. 2014, 52, 459–467. [Google Scholar]
- Selwal, M.K.; Selwal, K.K. High-level tannase production by Penicillium atramentosum KM using agro residues under submerged fermentation. Ann. Microbiol. 2012, 62, 139–148. [Google Scholar] [CrossRef]
- Goel, G.; Kumar, A.; Beniwal, V.; Raghav, M.; Puniya, A.K.; Singh, K. Degradation of tannic acid and purification and characterization of tannase from Enterococcus faecalis. Int. Biodeterior. Biodegrad. 2011, 65, 1061–1065. [Google Scholar] [CrossRef]
- Iwamoto, K.; Tsuruta, H.; Nishitaini, Y.; Osawa, R. Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T). Syst. Appl. Microbiol. 2008, 31, 269–277. [Google Scholar] [CrossRef]
- Aharwar, A.; Parihar, D.K. Tannases: Production, properties, applications. Biocatal. Agric. Biotechnol. 2018, 15, 322–334. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, L.; Saxena, R.K. Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour. Technol. 2008, 99, 2544–2551. [Google Scholar] [CrossRef]
- Chhokar, V.; Sangwan, M.; Beniwal, V.; Nehra, K.; Nehra, K.S. Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299. Appl. Biochem. Biotechnol. 2010, 160, 2256–2264. [Google Scholar] [CrossRef]
- Farag, A.M.; Hassan, S.W.; El-Says, A.M.; Ghanem, K.M. Purification, characterization and application of tannase enzyme isolated from marine Aspergillus nomius GWA5. J. Pure Appl. Microbiol. 2018, 12, 1939–1949. [Google Scholar] [CrossRef]
- Pan, J.; Wang, N.N.; Yin, X.J.; Liang, X.L.; Wang, Z.P. Characterization of a robust and pH-Stable tannase from mangrove-derived yeast Rhodosporidium diobovatum Q95. Mar. Drugs 2020, 18, 546. [Google Scholar] [CrossRef]
- Ong, C.B.; Ibrahim, D.; Mohd Kassim, M.J.N. The tannase from red yeast Rhodotorula glutinis: Purification and characterization. Biocatal. Biotransform. 2024, 42, 110–117. [Google Scholar] [CrossRef]
- Beniwal, V.; Kumar, A.; Goel, G.; Chhokar, V. A novel low molecular weight acido-thermophilic tannase from Enterobacter cloacae MTCC 9125. Biocatal. Agric. Biotechnol. 2013, 2, 132–137. [Google Scholar] [CrossRef]
- Guan, L.; Wang, K.; Gao, Y.; Li, J.; Yan, S.; Ji, N.; Ren, C.; Wang, J.; Zhou, Y.; Li, B. Biochemical and structural characterization of a novel bacterial tannase from Lachnospiraceae bacterium in ruminant gastrointestinal tract. Front. Bioeng. Biotechnol. 2021, 9, 806788. [Google Scholar] [CrossRef]
- Kanpiengjai, A.; Unban, K.; Nguyen, T.H.; Haltrich, D.; Khanongnuch, C. Expression and biochemical characterization of a new alkaline tannase from Lactobacillus pentosus. Protein Expr. Purif. 2019, 157, 36–41. [Google Scholar] [CrossRef]
- Gayen, S.; Ghosh, U. Purification and characterization of tannin acyl hydrolase produced by mixed solid state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923. BioMed Res. Int. 2013, 2013, 596380. [Google Scholar] [CrossRef]
- Riul, A.J.; Gonçalves, H.B.; Jorge, J.A.; Guimarães, L.H.S. Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. J. Mol. Catal. B Enzym. 2013, 85, 126–133. [Google Scholar] [CrossRef]
- Yuan, S.; Yan, R.; Lin, B.; Li, R.; Ye, X. Improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. Biochem. Biophys. Res. Commun. 2023, 653, 69–75. [Google Scholar] [CrossRef]
- Li, T.; Cui, N.; Fan, J.; Liu, X.; Guan, J.; Zhang, W.; Li, Y.; Gao, Q.; Liu, Y.; Xu, Y.; et al. Engineering β-agarase Aga0917 from Pseudoalteromonas fuliginea YTW1-15-1 to improve the thermostability and enzyme activity. ACS Sustain. Chem. Eng. 2022, 10, 15437–15449. [Google Scholar] [CrossRef]
- García-Conesa, M.T.; Østergaard, P.; Kauppinen, S.; Williamson, G. Hydrolysis of diethyl diferulates by a tannase from Aspergillus oryzae. Carbohyd. Polym. 2001, 44, 319–324. [Google Scholar] [CrossRef]
- Mostafa, H.S. Production of low-tannin Hibiscus sabdariffa tea through D-optimal design optimization of the preparation conditions and the catalytic action of new tannase. Food Chem. X 2023, 17, 100562. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef]
- Ye, J.H.; Jin, J.; Liang, H.L.; Lu, J.L.; Du, Y.Y.; Zheng, X.Q.; Liang, Y.R. Using tea stalk lignocelluloses as an adsorbent for separating decaffeinated tea catechins. Bioresour. Technol. 2009, 100, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, D.; Bongaerts, J.H.H.; Wantling, E.; Stokes, J.R.; Williamson, A.M. Astringency of tea catechins: More than an oral lubrication tactile percept. Food Hydrocoll. 2009, 23, 1984–1992. [Google Scholar] [CrossRef]
- Narukawa, M.; Kimata, H.; Noga, C.; Watanabe, T. Taste characterisation of green tea catechins. Int. J. Food Sci. Technol. 2010, 45, 1579–1585. [Google Scholar] [CrossRef]
- Boadi, D.; Neufeld, R. Encapsulation of tannase for the hydrolysis of tea tannins. Enzym. Microb. Technol. 2001, 28, 590–595. [Google Scholar] [CrossRef]
- Govindarajan, R.K.; Khanongnuch, C.; Mathivanan, K.; Shyu, D.J.H.; Sharma, K.P.; Mandal, S.D. In-vitro biotransformation of tea using tannase produced by Enterobacter cloacae 41. J. Food Sci. Technol. 2021, 58, 3235–3242. [Google Scholar] [CrossRef]
Purification Step | Total Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification Fold | Yield (%) |
---|---|---|---|---|---|
Crude enzyme | 52.5 | 9172.9 | 174.7 | 1 | 100 |
Ni-IDA agarose | 6.33 | 6705.4 | 1059.3 | 6.06 | 73.1 |
Treatment | Total Phenolic Content (mg GAE */mL) | ||
---|---|---|---|
Method 1 | Method 2 | Method 3 | |
TanPL1 | 4.39 ± 0.15 a,A | 4.43 ± 0.25 a,A | 3.39 ± 0.16 a,B |
Control | 4.24 ± 0.23 a,A | 4.28 ± 0.14 a,A | 2.63 ± 0.05 b,B |
MuTanPL1 | 4.32 ± 0.08 a,A | 5.32 ± 0.33 b,B | 5.10 ± 0.27 c,B |
Control | 4.23 ± 0.11 a,AB | 4.42 ± 0.14 a,A | 4.00 ± 0.18 d,B |
Green Tea Infusion | Tea Catechin and Gallic Acid Contents (mg/mL) | pH | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EGCG | EGC | ECG | EC | GCG | GC | CG | C | GA | Ester Catechins | Non-Ester Catechins | Total Catechins | ||
Method 1 | |||||||||||||
Control | 1.60 ± 0.03 a | 1.17 ± 0.02 a | 0.33 ± 0.01 a | 0.22 ± 0.00 a | 0.24 ± 0.01 a | 0.36 ± 0.02 a | – | 0.09 ± 0.01 a | 0.12 ± 0.01 a | 2.17 ± 0.07 a | 1.84 ± 0.06 a | 4.01 ± 0.20 a | 6.13 ± 0.01 a |
Tannase treatment | 0.04 ± 0.00 b | 2.15 ± 0.10 b | 0.02 ± 0.00 b | 0.38 ± 0.01 b | – | 0.46 ± 0.02 b | – | 0.11 ± 0.00 b | 0.76 ± 0.02 b | 0.06 ± 0.00 b | 3.10 ± 0.13 b | 3.16 ± 0.12 b | 5.12 ± 0.01 b |
Method 2 | |||||||||||||
Control | 1.81 ± 0.05 c | 1.18 ± 0.03 a | 0.36 ± 0.02 a | 0.22 ± 0.00 a | 0.25 ± 0.01 a | 0.32 ± 0.03 a | – | 0.09 ± 0.00 a | 0.11 ± 0.00 a | 2.42 ± 0.08 c | 1.81 ± 0.03 a | 4.23 ± 0.13 a | 6.05 ± 0.02 c |
Tannase treatment | 0.05 ± 0.00 b | 2.47 ± 0.08 c | 0.02 ± 0.00 b | 0.47 ± 0.02 c | – | 0.46 ± 0.03 b | – | 0.10 ± 0.00 ab | 1.29 ± 0.11 c | 0.07 ± 0.00 b | 3.50 ± 0.09 c | 3.57 ± 0.15 c | 4.83 ± 0.00 d |
Method 3 | |||||||||||||
Control | 1.76 ± 0.01 c | 1.17 ± 0.03 a | 0.37 ± 0.04 a | 0.19 ± 0.00 d | 0.16 ± 0.00 b | 0.28 ± 0.00 c | – | 0.06 ± 0.00 c | 0.10 ± 0.00 a | 2.29 ± 0.12 ac | 1.70 ± 0.01 d | 3.99 ± 0.15 a | 6.08 ± 0.03 ac |
Tannase treatment | 0.05 ± 0.00 b | 2.40 ± 0.06 c | 0.03 ± 0.00 b | 0.47 ± 0.01 c | – | 0.48 ± 0.00 b | – | 0.09 ± 0.00 a | 1.21 ± 0.05 c | 0.08 ± 0.00 b | 3.44 ± 0.11 c | 3.52 ± 0.08 c | 4.86 ± 0.01 e |
Green Tea Infusion | Sensory Attributes | |||
---|---|---|---|---|
Bitterness | Astringency | Sweet Aftertaste | Overall Acceptability | |
Control | 4.1 ± 0.5 a | 4.5 ± 0.7 a | 2.1 ± 0.5 a | 5.3 ± 0.6 a |
Tannase Treatment | 1.4 ± 0.4 b | 1.2 ± 0.1 b | 6.8 ± 1.0 b | 8.4 ± 1.1 b |
Green Tea Infusion | OD672nm | DPPH Inhibition (%) | α-Amylase Inhibition (%) |
---|---|---|---|
Control | 0.498 ± 0.013 a | 69.51 ± 4.56 a | 50.49 ± 3.35 a |
Tannase Treatment | 0.064 ± 0.005 b | 86.27 ± 5.88 b | 8.56 ± 0.49 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.-X.; Cao, S.-N.; Zhang, C.-S.; Wang, M.; Tang, Y.-Y.; Chen, J.; Zhu, L.-F.; Sun, J.; Meng, Q.-B.; Chen, J.; et al. Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion. Beverages 2025, 11, 99. https://doi.org/10.3390/beverages11040099
Zhou H-X, Cao S-N, Zhang C-S, Wang M, Tang Y-Y, Chen J, Zhu L-F, Sun J, Meng Q-B, Chen J, et al. Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion. Beverages. 2025; 11(4):99. https://doi.org/10.3390/beverages11040099
Chicago/Turabian StyleZhou, Hai-Xiang, Shi-Ning Cao, Chu-Shu Zhang, Mian Wang, Yue-Yi Tang, Jing Chen, Li-Fei Zhu, Jie Sun, Qing-Biao Meng, Jing Chen, and et al. 2025. "Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion" Beverages 11, no. 4: 99. https://doi.org/10.3390/beverages11040099
APA StyleZhou, H.-X., Cao, S.-N., Zhang, C.-S., Wang, M., Tang, Y.-Y., Chen, J., Zhu, L.-F., Sun, J., Meng, Q.-B., Chen, J., & Zhang, J.-C. (2025). Enhancing the Thermostability of a New Tannase Through Rational Design and Site-Directed Mutagenesis: A Quality Improvement Strategy for Green Tea Infusion. Beverages, 11(4), 99. https://doi.org/10.3390/beverages11040099