Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances †
Abstract
1. Introduction
2. Materials and Methods
2.1. Source Seeds
2.2. Seed Multiplication
2.3. Sample Preparation, Digestion and ICP-OES Analysis
2.4. Phytate Extraction and Spectrophotometric Analysis
2.5. Molar Ratios and Mineral Bioavailability
2.6. Experimental Design and Statistical Analyses
3. Results
3.1. Macronutrient Concentrations in Source and Multiplied Seeds of Industrial Hemp
3.2. Micronutrient Concentrations in Source and Multiplied Seeds of Industrial Hemp
3.3. Phytate Concentration and Content in Source and Multiplied Seeds of Industrial Hemp
3.4. Phytate-to-Mineral Molar Ratios in Source and Multiplied Seeds of Industrial Hemp
4. Discussion
4.1. Changes in Macro- and Micronutrient Composition in Hemp Seeds
4.2. Changes in Phytate Composition in Hemp Seeds
4.3. Changes in Bioavailability of Minerals in Hemp Seeds
4.4. Limitations and Future Scopes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SS | Source Seeds |
MS | Multiplied Seeds |
QTLs | Quantitative Trait Loci |
SCV | Suggested Critical Value |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
DPIRD-WA | Department of Primary Industries and Regional Development, WA |
References
- Crescente, G.; Piccolella, S.; Esposito, A.; Scognamiglio, M.; Fiorentino, A.; Pacifico, S. Chemical composition and nutraceutical properties of hempseed: An ancient food with actual functional value. Phytochem. Rev. 2018, 17, 733–749. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Wei, P.; Tang, Y.; Zhou, K.; Wei, Z.; Liu, G. Characteristics of Polysaccharides from Industrial Hemp (Cannabis sativa L.) Kernels. Foods 2024, 13, 3429. [Google Scholar] [CrossRef]
- Madhu, K.; Dipendra Kumar, M.; Bharti, S.; Akansha, G.; Ajay Kumar, S.; Mahmud, M.M.C.; Swati, A.; Jyoti, S.; Prasad, R.; Amritesh Chandra, S.; et al. Nutraceutical potential, phytochemistry of hemp seed (Cannabis sativa L.) and its application in food and feed: A review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Sirangelo, T.M.; Diretto, G.; Fiore, A.; Felletti, S.; Chenet, T.; Catani, M.; Spadafora, N.D. Nutrients and bioactive compounds from Cannabis sativa seeds: A review focused on omics-based investigations. Int. J. Mol. Sci. 2025, 26, 5219. [Google Scholar] [CrossRef]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in seed traits in a collection of Cannabis sativa L. genotypes. Front. Plant Sci. 2016, 7, 688. [Google Scholar] [CrossRef]
- Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. [Google Scholar] [CrossRef] [PubMed]
- Marolt, G.; Kolar, M. Analytical methods for determination of phytic acid and other inositol phosphates: A review. Molecules 2020, 26, 174. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Remo, R. Variability in antinutritional compounds in hempseed meal of Italian and French varieties. Plant 2013, 1, 25. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp seeds (Cannabis sativa L.) as a valuable source of natural ingredients for functional foods—A review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef]
- Floareș Oarga, D.; Berbecea, A.; Obiștioiu, D.; Hulea, A.; Hotea, I.; Buzna, C.; Sabo, L.A.; Panda, A.O.; Radulov, I. Nutritional profile and antioxidant properties of hemp (Cannabis sativa L.) seed from Romania. Appl. Sci. 2025, 15, 2178. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; Torija-Isasa, M.E.; Sánchez-Mata, M.d.C. Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. J. Food Compos. Anal. 2022, 109, 104516. [Google Scholar] [CrossRef]
- Lott, J.N.A.; Ockenden, I.; Raboy, V.; Batten, G.D. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Sci. Res. 2000, 10, 11–33. [Google Scholar] [CrossRef]
- Mattila, P.; Mäkinen, S.; Eurola, M.; Jalava, T.; Pihlava, J.-M.; Hellström, J.; Pihlanto, A. Nutritional value of commercial protein-rich plant products. Plant Foods Hum. Nutr. 2018, 73, 108–115. [Google Scholar] [CrossRef]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial hemp seed: From the field to value-added food ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef]
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Taaifi, Y.; Benmoumen, A.; Belhaj, K.; Aazza, S.; Abid, M.; Azeroual, E.; Elamrani, A.; Mansouri, F.; Serghini Caid, H. Seed composition of non-industrial hemp (Cannabis sativa L.) varieties from four regions in northern Morocco. Int. J. Food Sci. 2021, 56, 5931–5947. [Google Scholar] [CrossRef]
- Dinicola, S.; Minini, M.; Unfer, V.; Verna, R.; Cucina, A.; Bizzarri, M. Nutritional and acquired deficiencies in inositol bioavailability. Correlations with metabolic disorders. Int. J. Mol. Sci. 2017, 18, 2187. [Google Scholar] [CrossRef] [PubMed]
- Zdaniewicz, M.; Duliński, R.; Żuk-Gołaszewska, K.; Tarko, T. Characteristics of selected bioactive compounds and malting parameters of hemp (Cannabis sativa L.) seeds and malt. Molecules 2024, 29, 4345. [Google Scholar] [CrossRef]
- Bindra, G.S.; Gibson, R.S.; Thompson, L.U. [Phytate][calcium]/[zinc] ratios in Asian immigrant lacto-ovo vegetarian diets and their relationship to zinc nutriture. Nutr. Res. 1986, 6, 475–483. [Google Scholar] [CrossRef]
- Davies, N.T.; Carswell, A.J.P.; Mills, C.F. Effect of variation in dietary calcium intake on the phytate-zinc interaction in rats. In TEMA 5: Proceedings of the Fifth International Symposium on Trace Elements in Man and Animals; Mills, C.F., Bremner, I., Chesters, J.K., Eds.; Commonwealth Agricultural Bureaux: Wallingford, UK, 1985; pp. 456–457. [Google Scholar]
- Gibson, R.S.; Smit Vanderkooy, P.D.; Thompson, L. Dietary phytate × calcium/zinc millimolar ratios and zinc nutriture in some Ontario preschool children. Biol. Trace Elem. Res. 1991, 30, 87–94. [Google Scholar] [CrossRef]
- Hallberg, L.; Brune, M.; Rossander, L. Iron absorption in man: Ascorbic acid and dose-dependent inhibition by phytate. Am. J. Clin. Nutr. 1989, 49, 140–144. [Google Scholar] [CrossRef]
- Morris, E.; Ellis, R. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol. Trace Elem. Res. 1989, 19, 107–117. [Google Scholar] [CrossRef]
- Sandberg, A.-S.; Andersson, H.; Carlsson, N.-G.; Sandström, B. Degradation products of bran phytate formed during digestion in the human small intestine: Effect of extrusion cooking on digestibility. J. Nutr. 1987, 117, 2061–2065. [Google Scholar] [CrossRef]
- Turnlund, J.R.; King, J.C.; Keyes, W.R.; Gong, B.; Michel, M.C. A stable isotope study of zinc absorption in young men: Effects of phytate and a-cellulose. Am. J. Clin. Nutr. 1984, 40, 1071–1077. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461–1467S. [Google Scholar] [CrossRef] [PubMed]
- Lonnerdal, B. Dietary Factors Influencing Zinc Absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef] [PubMed]
- Rehman, Z.; Salariya, A.M.; Zafar, S.I. Effect of processing on available vulgari carbohydrate content and starch digestibility of kidney beans (Phaseolus vulgaris L.). Food Chem. 2001, 73, 351–355. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Juillerat, M.A.; Barclay, D.; Hurrell, R.F. Influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J. Food Sci. 2002, 67, 3484–3488. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Gibson, R.S.; Perlas, L.; Hotz, C. Improving the bioavailability of nutrients in plant foods at the household level. Proc. Nutr. Soc. 2006, 65, 160–168. [Google Scholar] [CrossRef]
- Weaver, C.M.; Kannan, S. Phytate and mineral bioavailability. In Food Phytates; CRC Press: Boca Raton, FL, USA, 2001; pp. 227–240. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Pfeiffer, W.H.; McClafferty, B. Biofortification: Breeding micronutrient-dense crops. In Breeding Major Food Staples; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 61–91. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Hurrell, R.F. Influence of vegetable protein sources on trace element and mineral bioavailability. J. Nutr. 2003, 133, 2973S–2977S. [Google Scholar] [CrossRef]
- Islam, M.M.; Rengel, Z.; Storer, P.; Siddique, K.H.M.; Solaiman, Z.M. Industrial hemp (Cannabis sativa L.) varieties and seed pre-treatments affect seed germination and early growth of seedlings. Agronomy 2022, 12, 6. [Google Scholar] [CrossRef]
- Islam, M.M.; Solaiman, Z.M.; Rengel, Z.; Abbott, L.K.; Storer, P.; Siddique, K.H.M. Dietary minerals in seeds of industrial hemp (Cannabis sativa L.) varieties differ with the origin of sources. In Proceedings of the 2nd Australian Industrial Hemp Conference, Fremantle, Australia, 25–28 February 2020; pp. 162–169. [Google Scholar]
- Simmons, W.J. Determination of low concentrations of cobalt in small samples of plant material by flameless atomic absorption spectrophotometry. Anal. Chem. 1975, 47, 2015–2018. [Google Scholar] [CrossRef]
- Simmons, W.J. Background absorption error in determination of copper in plants by flame atomic absorption spectrometry. Anal. Chem. 1978, 50, 870–873. [Google Scholar] [CrossRef]
- Latta, M.; Eskin, M. A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 1980, 28, 1313–1315. [Google Scholar] [CrossRef]
- Vaintraub, I.A.; Lapteva, N.A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal. Biochem. 1988, 175, 227–230. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Siddhuraju, P.; Becker, K. Plant secondary metabolites. In Methods in Molecular Biology; Clifton, N.J., Ed.; Humana Press: Totowa, NY, USA; New York, NY, USA, 2007; Volume 393, pp. 1–122. [Google Scholar]
- Lan, Y.; Zha, F.; Peckrul, A.; Hanson, B.; Johnson, B.; Rao, J.; Chen, B. Genotype x environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA. J. Am. Oil Chem. Soc. 2019, 96, 1417–1425. [Google Scholar] [CrossRef]
- Mihoc, M.; Pop, G.; Alexa, E.; Dem, D.; Militaru, A. Microelements distribution in whole hempseeds (Cannabis sativa L.) and in their fractions. Rev. Chim. 2013, 64, 776–780. [Google Scholar]
- Mihoc, M.; Pop, G.; Alexa, E.; Radulov, I. Nutritive quality of romanian hemp varieties (Cannabis sativa L.) with special focus on oil and metal contents of seeds. Chem. Cent. J. 2012, 6, 122. [Google Scholar] [CrossRef]
- Oseyko, M.; Sova, N.; Lutsenko, M.; Kalyna, V. Chemical aspects of the composition of industrial hemp seed products. Ukr. Food J. 2019, 8, 544–559. [Google Scholar] [CrossRef]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible Fedora cultivar hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef]
- Alasalvar, C.; Chang, S.K.; Bolling, B.; Oh, W.Y.; Shahidi, F. Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2382–2427. [Google Scholar] [CrossRef]
- Souza, M.L.; Fagundes, M. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). Am. J. Plant Sci. 2014, 5, 2566–2573. [Google Scholar] [CrossRef]
- Anderson, R.A. Chromium as an essential nutrient for humans. Regul. Toxicol. Pharmacol. 1997, 26, S35–S41. [Google Scholar] [CrossRef] [PubMed]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.M.; Terry, N. Chromium in the environment: Factors affecting biological remediation. Plant Soil 2003, 249, 139–156. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef]
- Raboy, V. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 2001, 6, 458–462. [Google Scholar] [CrossRef]
- Jung, S.K.; Kim, M.-K.; Lee, Y.-H.; Shin, D.H.; Shin, M.-H.; Chun, B.-Y.; Choi, B.Y. Lower zinc bioavailability may be related to higher risk of subclinical atherosclerosis in Korean adults. PLoS ONE 2013, 8, e80115. [Google Scholar] [CrossRef]
Variety | Sex Type | Country of Origin | Supplier | Seed Weight (mg seed–1) | ||
---|---|---|---|---|---|---|
Source | Multiplied | |||||
Ferimon | Monoecious | France | WA Hemp Growers’ Co-op Ltd., Carbunup River, Australia | 18.5 d | 16.4 e | |
Fedora 17 | Monoecious | France | WA Hemp Growers’ Co-op Ltd., Carbunup River, Australia | 21.1 cd | 15.2 e | |
Santhica | Monoecious | France | WA Hemp Growers’ Co-op Ltd., Carbunup River, Australia | 19.2 d | 19.7 d | |
Morpeth | Monoecious | Denmark | Food, Fibre and Land International Group, Perth, Australia | 21.2 cd | 27.9 b | |
Han NE | Dioecious | China | Premium Hemp Australia, Perth, Australia and DPIRD-WA *, South Perth, Australia | 28.8 a | 23.9 c | |
Han FNQ | Dioecious | China | Premium Hemp Australia, Perth, Australia and DPIRD-WA, South Perth, Australia | 24.0 bc | 24.0 c | |
Han NW | Dioecious | China | Premium Hemp Australia, Perth, Australia and DPIRD-WA, South Perth, Australia | 26.8 ab | 46.1 a | |
Mean | 22.8 | 24.8 | ||||
p-value | <0.001 | <0.001 | ||||
χ2 p-value | 0.0 |
Variety | P (g kg–1) | K (g kg–1) | Mg (g kg–1) | S (g kg–1) | Ca (g kg–1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
SS | MS | SS | MS | SS | MS | SS | MS | SS | MS | |
Ferimon | 8.0 bc | 11.6 a | 6.5 b | 11.5 c | 3.8 b | 4.9 a | 2.6 bc | 2.7 ab | 1.1 c | 1.3 d |
Fedora 17 | 10.1 a | 9.5 bc | 7.6 a | 9.5 d | 4.3 ab | 4.5 ab | 2.3 cd | 2.6 ab | 1.1 c | 1.5 cd |
Santhica | 9.1 abc | 9.9 bc | 7.5 a | 12.3 c | 4.1 ab | 4.3 b | 2.6 bc | 2.4 b | 1.3 a | 1.4 cd |
Morpeth | 10.6 a | 5.9 d | 8.0 a | 14.6 b | 4.9 a | 2.8 c | 2.0 d | 2.4 b | 1.1 bc | 1.6 bc |
Han NE | 8.9 abc | 8.8 c | 7.3 ab | 12.1 c | 3.9 b | 4.4 b | 2.9 ab | 2.7 ab | 1.2 ab | 1.7 b |
Han FNQ | 9.6 ab | 10.2 b | 7.4 ab | 12.1 c | 4.3 ab | 4.1 b | 2.4 cd | 2.7 a | 1.1 bc | 1.3 d |
Han NW | 7.5 c | 4.4 e | 6.5 b | 16.8 a | 3.7 b | 2.5 c | 3.1 a | 1.8 c | 1.2 bc | 2.0 a |
Mean | 9.1 | 8.6 | 7.3 | 12.7 | 4.1 | 3.9 | 2.6 | 2.5 | 1.2 | 1.5 |
p-value | 0.001 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
χ2 p-value | 0.69 | 0.00 | 1.00 | 1.00 | 1.00 |
Variety | Fe (mg kg–1) | Mn (mg kg–1) | Zn (mg kg–1) | Cu (mg kg–1) | Cr (mg kg–1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
SS | MS | SS | MS | SS | MS | SS | MS | SS | MS | |
Ferimon | 143.1 a | 162.1 a | 153.2 a | 160.0 a | 81.2 a | 149.0 a | 16.1 a | 13.9 a | 2.0 d | 0.4 ab |
Fedora 17 | 146.6 a | 158.3 a | 112.3 b | 162.4 a | 69.7 b | 101.0 d | 14.5 b | 13.7 a | 2.4 c | 0.3 b |
Santhica | 126.0 a | 126.7 b | 92.3 cd | 113.0 c | 69.4 b | 127.7 b | 13.4 bc | 12.2 b | 1.8 d | 0.3 b |
Morpeth | 149.6 a | 83.8 c | 76.3 d | 92.8 d | 76.5 ab | 85.2 e | 12.8 c | 5.4 e | 2.2 cd | 0.4 ab |
Han NE | 150.1 a | 130.2 b | 106.8 bc | 128.3 bc | 51.1 c | 116.0 bc | 10.9 d | 9.0 c | 3.9 a | 0.5 a |
Han FNQ | 134.9 a | 137.3 b | 92.2 cd | 141.7 b | 39.7 d | 112.2 cd | 11.2 d | 12.0 b | 4.0 a | 0.4 ab |
Han NW | 149.2 a | 93.3 c | 79.9 d | 93.9 d | 48.7 cd | 59.5 f | 11.5 d | 7.0 d | 3.5 b | 0.5 a |
Mean | 142.8 | 121.9 | 101.9 | 123.1 | 62.3 | 101.3 | 12.9 | 9.8 | 2.8 | 0.4 |
p-value | 0.073 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 |
χ2 p-value | 0.00 | 0.00 | 0.00 | 0.42 | 0.00 |
Variety | Phytate Concentration (g kg–1) | Phytate Content (µg seed–1) | ||
---|---|---|---|---|
SS | MS | SS | MS | |
Ferimon | 11.7 e | 13.4 a | 217.2 c | 220.2 d |
Fedora 17 | 13.4 a | 12.4 c | 283.6 b | 187.6 e |
Santhica | 11.6 f | 12.7 b | 223.2 c | 251.2 cd |
Morpeth | 13.2 b | 9.6 f | 279.8 b | 267.6 bc |
Han NE | 12.0 d | 11.0 e | 346.3 a | 262.8 bc |
Han FNQ | 12.2 c | 11.9 d | 292.9 b | 285.9 b |
Han NW | 11.4 g | 8.8 g | 304.3 b | 408.2 a |
Mean | 12.2 | 11.4 | 278.2 | 269.1 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
χ2 p-value | 1.00 | 0.00 |
Variety | [Phytate/Ca] SCV > 0.24 | [Phytate/Fe] SCV > 1.0 | [Phytate/Zn] SCV > 15 | [Phytate × Ca/Zn] SCV > 200 | ||||
---|---|---|---|---|---|---|---|---|
SS | MS | SS | MS | SS | MS | SS | MS | |
Ferimon | 0.7 bc | 0.6 a | 7.0 abc | 7.0 d | 14.4 e | 8.9 e | 37.9 d | 29.4 d |
Fedora 17 | 0.8 a | 0.5 b | 7.8 ab | 6.6 d | 19.2 cd | 12.2 b | 51.1 c | 45.2 b |
Santhica | 0.5 d | 0.6 ab | 7.8 a | 8.5 b | 16.7 de | 9.9 cde | 55.7 c | 34.4 cd |
Morpeth | 0.7 ab | 0.4 c | 7.5 ab | 9.7 a | 17.3 de | 11.2 bc | 48.8 c | 44.2 b |
Han NE | 0.6 cd | 0.4 c | 6.8 bc | 7.1 d | 23.3 b | 9.4 de | 71.5 b | 40.9 bc |
Han FNQ | 0.6 bc | 0.6 ab | 7.7 ab | 7.4 cd | 30.4 a | 10.6 cd | 86.9 a | 33.3 cd |
Han NW | 0.6 cd | 0.3 d | 6.5 c | 8.0 bc | 23.3 bc | 14.7 a | 67.5 b | 74.9 a |
Mean | 0.6 | 0.5 | 7.3 | 7.8 | 20.6 | 11.0 | 59.9 | 43.2 |
p-value | <0.001 | <0.001 | 0.039 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
χ2 p-value | 1.00 | 1.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.M.; Siddique, K.H.M.; Solaiman, Z.M. Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances. Sustainability 2025, 17, 5844. https://doi.org/10.3390/su17135844
Islam MM, Siddique KHM, Solaiman ZM. Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances. Sustainability. 2025; 17(13):5844. https://doi.org/10.3390/su17135844
Chicago/Turabian StyleIslam, Mohammad Moinul, Kadambot H. M. Siddique, and Zakaria M. Solaiman. 2025. "Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances" Sustainability 17, no. 13: 5844. https://doi.org/10.3390/su17135844
APA StyleIslam, M. M., Siddique, K. H. M., & Solaiman, Z. M. (2025). Nutrient Profiles and Bioavailability in Industrial Hemp (Cannabis sativa L.) Seeds from Diverse Provenances. Sustainability, 17(13), 5844. https://doi.org/10.3390/su17135844