Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review
Simple Summary
Abstract
1. Introduction
2. Enhancing Broiler Growth Performance Through Fermented Feed: Nutritional and Productivity Insights
Effects of Wet and Liquid Fermented Feeds on Broiler Growth Performance
3. Enhancing Broiler Gut Health Through Fermented Feed: Immunity, Morphology, and Microbial Composition
3.1. Fermented Feed’s Effect on Intestinal Immune Cell Signaling
3.2. Fermented Feed’s Effect on Immune Cell Dynamics in the Gastrointestinal Tract
3.3. Fermented Feed’s Effect on Intestinal Morphology
3.4. Fermented Feed’s Effect on Gut Microbiota Composition and Function
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANF | anti-nutritional factor |
BoF | bursa of Fabricius |
BW | body weight |
DDGS | distillers’ dried grains with solubles |
FCR | feed conversion ratio |
FFA | fermented feed additive |
FI | feed intake |
GALT | gut-associated lymphoid tissue |
GIT | gastrointestinal tract |
IEC | intestinal epithelial cell |
IFN | interferon |
IL | interleukin |
LAB | lactic acid bacteria |
LBP | Lactobacillus-based probiotic |
LFP | Bacillus licheniformis-fermented product |
OTU | operational taxonomic unit |
RSM | rapeseed meal |
SBM | soybean meal |
SCFA | short-chain fatty acid |
SFP | Bacillus subtilis-fermented product |
TGF-β | transforming growth factor-beta |
TLR | toll-like receptor |
TNF | tumor necrosis factor |
VH | villus height |
VH/CD | villus height-to-crypt depth |
WG | weight gain |
References
- United Nations Department of Economic and Social Affairs. World Population Projected to Reach 9.8 Million in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 17 June 2025).
- Babinszky, L.; Verstegen, M.W.A.; Hendriks, W.H. (Eds.) Poultry and Pig Nutrition: Challenges of the 21st Century; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019. [Google Scholar]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Nagpal, R.; Shrivastava, B.; Kumar, N.; Dhewa, T.; Sahay, H. Microbial feed additives. In Rumen Microbiology: From Evolution to Revolution; Puniya, A.K., Singh, R., Kamra, D.N., Eds.; Springer: New Delhi, India, 2015; pp. 161–175. [Google Scholar] [CrossRef]
- Dai, Z.L.; Cui, L.; Li, J.; Wang, B.G.; Guo, L.N.; Wu, Z.L.; Zhu, W.Y.; Wu, G.Y. Fermentation techniques in feed production. In Animal Agriculture; Elsevier: London, UK, 2020; pp. 407–429. [Google Scholar] [CrossRef]
- Ghamry, M.; Zhao, W.; Li, L. Impact of Lactobacillus apis on the antioxidant activity, phytic acid degradation, nutraceutical value and flavor properties of fermented wheat bran, compared to Saccharomyces cerevisiae and Lactobacillus plantarum. Food Res. Int. 2023, 163, 112142. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented liquid feed—Microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed Sci. Technol. 2012, 173, 17–40. [Google Scholar] [CrossRef]
- Wakil, S.; Ajayi, O. Production of lactic acid from starchy-based food substrates. J. Appl. Biosci. 2013, 71, 5673. [Google Scholar] [CrossRef]
- Alshelmani, M.I.; Kaka, U.; Abdalla, E.A.; Humam, A.M.; Zamani, H.U. Effect of feeding fermented and non-fermented palm kernel cake on the performance of broiler chickens: A review. Worlds Poult. Sci. J. 2021, 77, 377–388. [Google Scholar] [CrossRef]
- Missotten, J.A.; Michiels, J.; Dierick, N.; Ovyn, A.; Akbarian, A.; De Smet, S. Effect of fermented moist feed on performance, gut bacteria and gut histo-morphology in broilers. Br. Poult. Sci. 2013, 54, 627–634. [Google Scholar] [CrossRef]
- Sugiharto, S.; Ranjitkar, S. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Yalda, A.Y.; Forbes, J.M. Food intake and growth in chickens given food in the wet form with and without access to drinking water. Br. Poult. Sci. 1995, 36, 357–369. [Google Scholar] [CrossRef]
- Forbes, J.M. Wet foods for poultry. Avian Poult. Biol. Rev. 2003, 14, 175–193. [Google Scholar] [CrossRef]
- Akinola, O.S.; Onakomaiya, A.O.; Agunbiade, J.A.; Oso, A.O. Growth performance, apparent nutrient digestibility, intestinal morphology and carcass traits of broiler chickens fed dry, wet and fermented-wet feed. Livest. Sci. 2015, 177, 103–109. [Google Scholar] [CrossRef]
- Yeh, R.H.; Hsieh, C.W.; Chen, K.L. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers. Poult. Sci. 2018, 97, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Chiang, G.; Lu, W.Q.; Piao, X.S.; Hu, J.K.; Gong, L.M.; Thacker, P.A. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian Australas. J. Anim. Sci. 2010, 23, 263–271. [Google Scholar] [CrossRef]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers. Asian Australas. J. Anim. Sci. 2012, 25, 1734–1741. [Google Scholar] [CrossRef]
- Sun, H.; Tang, J.W.; Yao, X.H.; Wu, Y.F.; Wang, X.; Feng, J. Effects of dietary inclusion of fermented cottonseed meal on growth, cecal microbial population, small intestinal morphology, and digestive enzyme activity of broilers. Trop. Anim. Health Prod. 2013, 45, 987–993. [Google Scholar] [CrossRef]
- Jazi, V.; Boldaji, F.; Dastar, B.; Hashemi, S.R.; Ashayerizadeh, A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. Br. Poult. Sci. 2017, 58, 402–408. [Google Scholar] [CrossRef]
- Ashayerizadeh, A.; Dastar, B.; Shargh, M.S.; Mahoonak, A.R.S.; Zerehdaran, S. Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livest. Sci. 2018, 216, 183–190. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wei, F.H.; Liu, X.L.; Yi, C.X.; Zhang, Y.G. Improvement of the nutritional value, sensory properties and bioavailability of rapeseed meal fermented with mixed microorganisms. LWT 2019, 112, 108238. [Google Scholar] [CrossRef]
- Azrinnahar, M.; Islam, N.; Shuvo, A.A.S.; Kabir, A.K.M.A.; Islam, K.M.S. Effect of feeding fermented (Saccharomyces cerevisiae) de-oiled rice bran in broiler growth and bone mineralization. J. Saudi Soc. Agric. Sci. 2021, 20, 476–481. [Google Scholar] [CrossRef]
- Servi, S.; Özkaya, H.; Colakoglu, A.S. Dephytinization of wheat bran by fermentation with bakers’ yeast, incubation with barley malt flour and autoclaving at different pH levels. J. Cereal Sci. 2008, 48, 471–476. [Google Scholar] [CrossRef]
- Zengin, M.; Sur, A.; İlhan, Z.; Azman, M.A.; Tavşanlı, H.; Esen, S.; Bacaksız, O.K.; Demir, E. Effects of fermented distillers grains with solubles, partially replaced with soybean meal, on performance, blood parameters, meat quality, intestinal flora, and immune response in broiler. Res. Vet. Sci. 2022, 150, 58–64. [Google Scholar] [CrossRef]
- Skrede, G.; Herstad, O.; Sahlstrøm, S.; Holck, A.; Slinde, E.; Skrede, A. Effects of lactic acid fermentation on wheat and barley carbohydrate composition and production performance in the chicken. Anim. Feed Sci. Technol. 2003, 105, 135–148. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, L.J.; Liu, H.Y.; Yang, G.Q. Effects of fermented feed on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production, and the microbiota community in broilers. Poult. Sci. 2023, 102, 102629. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.A.; Silversides, F.G. Defining the effects of wheat type, water inclusion level, and wet-diet restriction on variability in performance of broilers fed wheat-based diets with added water. Can. J. Anim. Sci. 2003, 83, 265–272. [Google Scholar] [CrossRef]
- Lyberg, K.; Simonsson, A.; Lindberg, J.E. Influence of phosphorus level and soaking of food on phosphorus availability and performance in growing-finishing pigs. Anim. Sci. 2005, 81, 375–381. [Google Scholar] [CrossRef]
- Afsharmanesh, M.; Barani, M.; Silversides, F.G. Evaluation of wet-feeding wheat-based diets containing Saccharomyces cerevisiae to broiler chickens. Br. Poult. Sci. 2010, 51, 776–783. [Google Scholar] [CrossRef]
- Scott, T.A. Impact of wet feeding wheat-based diets with or without enzyme on broiler chick performance. Can. J. Anim. Sci. 2002, 82, 409–417. [Google Scholar] [CrossRef]
- Awojobi, H.A.; Oluwole, B.O.; Adekunmisi, A.A.; Buraimo, R.A. Performance of finisher broilers fed wet mash with or without drinking water during wet season in the tropics. Int. J. Poult. Sci. 2009, 8, 592–594. [Google Scholar] [CrossRef]
- Yasar, S.; Forbes, J.M. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based foods soaked in water. Br. Poult. Sci. 1999, 40, 65–76. [Google Scholar] [CrossRef]
- Dei, H.K.; Bumbie, G.Z. Effect of wet feeding on growth performance of broiler chickens in a hot climate. Br. Poult. Sci. 2011, 52, 82–85. [Google Scholar] [CrossRef]
- Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef]
- Uchewa, E.N.; Onu, P.N. The effect of feed wetting and fermentation on the performance of broiler chick. Biotechnol. Anim. Husb. 2012, 28, 433–439. [Google Scholar] [CrossRef]
- Heres, L.; Engel, B.; Van Knapen, F.; de Jong, M.C.; Wagenaar, J.A.; Urlings, H.A. Fermented liquid feed reduces susceptibility of broilers for Salmonella Enteritidis. Poult. Sci. 2003, 82, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Heres, L.; Engel, B.; Van Knapen, F.; Wagenaar, J.A.; Urlings, B.A.P. Effect of fermented feed on the susceptibility for Campylobacter jejuni colonisation in broiler chickens with and without concurrent inoculation of Salmonella Enteritidis. Int. J. Food Microbiol. 2003, 87, 75–86. [Google Scholar] [CrossRef]
- Mah, A.T.; Van Landeghem, L.; Gavin, H.E.; Magness, S.T.; Lund, P.K. Impact of diet-induced obesity on intestinal stem cells: Hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Endocrinology 2014, 155, 3302–3314. [Google Scholar] [CrossRef]
- Elmi, V.A.; Moradi, S.; Harsini, S.G.; Rahimi, M. Effects of Lactobacillus acidophilus and natural antibacterials on growth performance and Salmonella colonization in broiler chickens challenged with Salmonella Enteritidis. Livest. Sci. 2020, 233, 103948. [Google Scholar] [CrossRef]
- Zhang, X.H.; Cao, F.L.; Sun, Z.Y.; Yu, W.W.; Zhao, L.G.; Wang, G.B.; Wang, T. Effect of feeding Aspergillus niger-fermented Ginkgo biloba-leaves on growth, small intestinal structure and function of broiler chicks. Livest. Sci. 2012, 147, 170–180. [Google Scholar] [CrossRef]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.G.; Willing, B.P. Dietary fiber and intestinal health of monogastric animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef]
- Naeem, M.; Bourassa, D. Probiotics in poultry: Unlocking productivity through microbiome modulation and gut health. Microorganisms 2025, 13, 257. [Google Scholar] [CrossRef]
- Song, B.C.; Tang, D.Z.; Yan, S.J.; Fan, H.; Li, G.; Shahid, M.S.; Mahmood, T.; Guo, Y.M. Effects of age on immune function in broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 42. [Google Scholar] [CrossRef]
- Peng, W.T.; Talpur, M.Z.; Zeng, Y.X.; Xie, P.P.; Li, J.C.; Wang, S.B.; Wang, L.N.; Zhu, X.T.; Gao, P.; Jiang, Q.Y.; et al. Influence of fermented feed additive on gut morphology, immune status, and microbiota in broilers. BMC Vet. Res. 2022, 18, 218. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.J.; Wu, S.G.; Yu, S.H.; Yoon, I.; Moore, D.; Gao, Y.P.; Yan, H.J.; Qi, G.H. Effect of Saccharomyces cerevisiae fermentation product on immune functions of broilers challenged with Eimeria tenella. Poult. Sci. 2009, 88, 2141–2151. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, J.J.; Sun, J.; Li, Y.; Wang, P.P.; Jiang, R.; Rahman, M.R.T. Effect of fermented feed on intestinal morphology, immune status, carcass and growth performance of Emei black chickens. FASEB J. 2016 (Suppl. 1), lb240. [CrossRef]
- Valentini, M.; Piermattei, A.; Di Sante, G.; Migliara, G.; Delogu, G.; Ria, F. Immunomodulation by gut microbiota: Role of toll-like receptor expressed by T cells. J. Immunol. Res. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Filho, R.A.C.P.; Díaz, S.J.A.; Fernando, F.S.; Chang, Y.F.; Filho, R.L.A.; Berchieri, A., Jr. Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet. Immunol. Immunopathol. 2015, 167, 64–69. [Google Scholar] [CrossRef]
- Cameron, M.J.; Kelvin, D.J. Cytokines, chemokines and their receptors. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6294/ (accessed on 17 June 2025).
- Burgueño, J.F.; Abreu, M.T. Epithelial toll-like receptors and their role in gut homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 263–278. [Google Scholar] [CrossRef]
- Cong, Y.; Weaver, C.T.; Lazenby, A.; Elson, C.O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J. Immunol. 2002, 169, 6112–6119. [Google Scholar] [CrossRef]
- Kullberg, M.C.; Jankovic, D.; Gorelick, P.L.; Caspar, P.; Letterio, J.J.; Cheever, A.W.; Sher, A. Bacteria-triggered CD4+ T regulatory cells suppress Helicobacter hepaticus–induced colitis. J. Exp. Med. 2002, 196, 505–515. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Higgins, S.E.; Higgins, J.P.; Wolfenden, A.D.; Henderson, S.N.; Torres-Rodriguez, A.; Tellez, G.; Hargis, B. Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella Enteritidis in neonatal broiler chicks. Poult. Sci. 2008, 87, 27–31. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, I.; Nepovimova, E.; Dhanjal, D.S.; Shaikh, S.S.; Knop, R.; Atuahene, D.; Shaikh, A.M.; Kovács, B. Revolutionising broiler nutrition: The role of probiotics, fermented products, and paraprobiotics in functional feeds. J. Agric. Food Res. 2025, 21, 101859. [Google Scholar] [CrossRef]
- Su, W.F.; Jiang, Z.P.; Wang, C.; Zhang, Y.; Gong, T.; Wang, F.Q.; Jin, M.L.; Wang, Y.Z.; Lu, Z.Q. Co-fermented defatted rice bran alters gut microbiota and improves growth performance, antioxidant capacity, immune status and intestinal permeability of finishing pigs. Anim. Nutr. 2022, 11, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Du, M.; Tu, Y.; You, W.J.; Chen, W.T.; Liu, G.L.; Li, J.Y.; Wang, Y.Z.; Lu, Z.Q.; Wang, T.H.; et al. Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. Anim. Nutr. 2023, 12, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Muñoz-Quezada, S.; Gomez-Llorente, C.; Matencio, E.; Bernal, M.J.; Romero, F.; Gil, A. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella Typhi through TLR activation. PLoS ONE 2013, 8, e59370. [Google Scholar] [CrossRef]
- Noujaim, J.C.; Filho, R.L.A.; Lima, E.T.; Okamoto, A.S.; Amorim, R.L.; Neto, R.T. Detection of T lymphocytes in intestine of broiler chicks treated with Lactobacillus spp. and challenged with Salmonella enterica serovar Enteritidis. Poult. Sci. 2008, 87, 927–933. [Google Scholar] [CrossRef]
- Simon, O.; Jadamus, A.; Vahjen, W. Probiotic feed additives—Effectiveness and expected modes of action. J. Anim. Feed Sci. 2001, 10 (Suppl. S1), 51–67. [Google Scholar] [CrossRef]
- Pulverer, G.; Ko, H.L.; Roszkowski, W.; Beuth, J.; Yassin, A.; Jeljaszewicz, J. Digestive tract microflora liberates low molecular weight peptides with immunotriggering activity. Zentralbl. Bakteriol. 1990, 272, 318–327. [Google Scholar] [CrossRef]
- Ao, X.; Zhou, T.X.; Kim, H.J.; Hong, S.M.; Kim, I.H. Influence of fermented red ginseng extract on broilers and laying hens. Asian Australas. J. Anim. Sci. 2011, 24, 993–1000. [Google Scholar] [CrossRef]
- Ali, Q.; Ma, S.; La, S.; Guo, Z.; Liu, B.; Gao, Z.; Farooq, U.; Wang, Z.; Zhu, X.; Cui, Y.; et al. Microbial short-chain fatty acids: A bridge between dietary fibers and poultry gut health—A review. Anim. Biosci. 2022, 35, 1461–1478. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Liao, X.D.; Shao, Y.X.; Sun, G.M.; Yang, Y.F.; Zhang, L.Y.; Guo, Y.L.; Luo, X.G.; Lu, L. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poult. Sci. 2020, 99, 5883–5895. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.D.; Sun, P.; Zhang, B.K.; Kong, L.L.; Xiao, C.P.; Song, Z.G. Progress on gut health maintenance and antibiotic alternatives in broiler chicken production. Front. Nutr. 2021, 8, 692839. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, E.J.; Lee, J.C.; Kim, W.K.; Kim, H.S. Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-κB and ERK signaling pathways. Int. Immunopharmacol. 2007, 7, 70–77. [Google Scholar] [CrossRef]
- Usami, M.; Kishimoto, K.; Ohata, A.; Miyoshi, M.; Aoyama, M.; Fueda, Y.; Kotani, J. Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr. Res. 2008, 28, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1286. [Google Scholar] [CrossRef]
- Zaibi, M.S.; Stocker, C.J.; O’Dowd, J.; Davies, A.; Bellahcene, M.; Cawthorne, M.A.; Brown, A.J.H.; Smith, D.M.; Arch, J.R.S. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 2010, 584, 2381–2386. [Google Scholar] [CrossRef]
- Peng, G.Q.; Xiong, C.; Zeng, X.F.; Jin, Y.; Huang, W.L. Exploring nutrient profiles, phytochemical composition, and the antiproliferative activity of Ganoderma lucidum and Ganoderma leucocontextum: A comprehensive comparative study. Foods 2024, 13, 614. [Google Scholar] [CrossRef]
- Xia, Q.L.; Zhao, Q.; Zhu, H.; Cao, Y.; Yang, K.; Sun, P.L.; Cai, M. Physicochemical characteristics of Ganoderma lucidum oligosaccharide and its regulatory effect on intestinal flora in vitro fermentation. Food Chem. X 2022, 15, 100421. [Google Scholar] [CrossRef]
- Omoor, I.N.A.; Yankey, R.; Shehata, A.I.; Fang, C.H.; Hui, L.; Dongmei, L.; Ling, J.; Dosoky, W.M.; Karanja, J.K.; Dawood, M.A.O.; et al. Dietary supplement of fermented grass forage regulates growth performance, antioxidant capacity, and immune response of broiler chickens. Poult. Sci. 2024, 103, 103323. [Google Scholar] [CrossRef]
- Kaiser, P.; Wain, H.M.; Rothwell, L. Structure of the chicken interferon-γ gene, and comparison to mammalian homologues. Gene 1998, 207, 25–32. [Google Scholar] [CrossRef]
- Li, D.F.; Nelssen, J.L.; Reddy, P.G.; Blecha, F.; Hancock, J.D.; Allee, G.L.; Goodband, R.D.; Klemm, R.D. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 1990, 68, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, W.; Xin, S.Z.; Wu, S.; Peng, C.L.; Ding, H.Y.; Feng, S.B.; Zhao, C.; Wu, J.J.; Wang, X.C. Soybean glycinin and β-conglycinin damage the intestinal barrier by triggering oxidative stress and inflammatory response in weaned piglets. Eur. J. Nutr. 2023, 62, 2841–2854. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liu, X.; Xu, Z.R.; Wang, Y.Z.; Liu, J.X. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poult. Sci. 2007, 86, 1149–1154. [Google Scholar] [CrossRef]
- Schiffrin, E.J.; Brassart, D.; Servin, A.L.; Rochat, F.; Donnet-Hughes, A. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain selection. Am. J. Clin. Nutr. 1997, 66, 515S–520S. [Google Scholar] [CrossRef]
- Muir, W.I.; Bryden, W.L.; Husband, A.J. Immunity, vaccination and the avian intestinal tract. Dev. Comp. Immunol. 2000, 24, 325–342. [Google Scholar] [CrossRef]
- Lillehoj, H.S.; Chung, K.S. Postnatal development of T-lymphocyte subpopulations in the intestinal intraepithelium and lamina propria in chickens. Vet. Immunol. Immunopathol. 1992, 31, 347–360. [Google Scholar] [CrossRef]
- Nguyen, D.T.N.; Le, N.H.; Pham, V.V.; Parra, E.; Forti, A.; Le, H.T. Relationship between the ratio of villous height: Crypt depth and gut bacteria counts as well production parameters in broiler chickens. J. Agric. Dev. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Gilani, S.M.H.; Rashid, Z.; Galani, S.; Ilyas, S.; Sahar, S.; Ul-Hassan, Z.; Al-Ghanim, K.; Zehra, S.; Azhar, A.; Al-Misned, F.; et al. Growth performance, intestinal histomorphology, gut microflora and ghrelin gene expression analysis of broiler by supplementing natural growth promoters: A nutrigenomics approach. Saudi J. Biol. Sci. 2021, 28, 3438–3447. [Google Scholar] [CrossRef]
- Pinto, G.A.S.; Leite, S.G.F.; Terzi, S.C.; Couri, S. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 2001, 32, 24–26. [Google Scholar] [CrossRef]
- Ding, X.P.; Qi, J.; Chang, Y.X.; Mu, L.L.; Zhu, D.N.; Yu, B.Y. Quality control of flavonoids in Ginkgo biloba leaves by high-performance liquid chromatography with diode array detection and on-line radical scavenging activity detection. J. Chromatogr. A 2009, 1216, 2204–2210. [Google Scholar] [CrossRef]
- Chen, S.; Xing, X.H.; Huang, J.J.; Xu, M.S. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: Improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb. Technol. 2011, 48, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.L.; Zhang, X.H.; Yu, W.W.; Zhao, L.G.; Wang, T. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci. 2012, 91, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Ramlucken, U.; Lalloo, R.; Roets, Y.; Moonsamy, G.; van Rensburg, C.J.; Thantsha, M.S. Advantages of Bacillus-based probiotics in poultry production. Livest. Sci. 2020, 241, 104215. [Google Scholar] [CrossRef]
- Bahaddad, S.A.; Almalki, M.H.K.; Alghamdi, O.A.; Sohrab, S.S.; Yasir, M.; Azhar, E.I.; Chouayekh, H. Bacillus species as direct-fed microbial antibiotic alternatives for monogastric production. Probiotics Antimicrob. Proteins 2023, 15, 1–16. [Google Scholar] [CrossRef]
- Lee, Y.S.; Ku, K.L.; Chen, P.Y.; Chen, K.L. The fermented product of high-yield surfactin strain Bacillus subtilis LYS1 improves the growth performance and intestinal villi morphology in broilers. Poult. Sci. 2023, 102, 102839. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Zhang, N.; Han, J.C.; Chang, C.W.; Hsiao, F.S.H.; Yu, Y.H. Optimization of surfactin production from Bacillus subtilis in fermentation and its effects on Clostridium perfringens-induced necrotic enteritis and growth performance in broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1232–1244. [Google Scholar] [CrossRef]
- Yu, Y.H.; Wu, C.M.; Chen, W.J.; Hua, K.F.; Liu, J.R.; Cheng, Y.H. Effectiveness of Bacillus licheniformis-fermented products and their derived antimicrobial lipopeptides in controlling coccidiosis in broilers. Animals 2021, 11, 3576. [Google Scholar] [CrossRef]
- Chang, W.Y.; Yu, Y.H. Effect of Bacillus species-fermented products and essential oils on growth performance, gut morphology, cecal short-chain fatty acid levels, and microbiota community in broilers. Poult. Sci. 2022, 101, 101970. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Grembecka, M. Effect of fermentation on the nutritional quality of the selected vegetables and legumes and their health effects. Life 2023, 13, 655. [Google Scholar] [CrossRef]
- Qaisrani, S.N.; van Krimpen, M.M.; Kwakkel, R.P.; Verstegen, M.W.A.; Hendriks, W.H. Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers. Poult. Sci. 2015, 94, 2152–2164. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Olson, E.G.; Ricke, S.C. Impact of the gastrointestinal microbiome and fermentation metabolites on broiler performance. Poult. Sci. 2022, 101, 101786. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, I. Composition and function of chicken gut microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Clavijo, V.; Flórez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Ricke, S.C. Strategies to improve poultry food safety, a landscape review. Annu. Rev. Anim. Biosci. 2021, 9, 379–400. [Google Scholar] [CrossRef]
- Merino, L.; Trejo, F.M.; De Antoni, G.; Golowczyc, M.A. Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Res. Int. 2019, 123, 258–265. [Google Scholar] [CrossRef]
- Rastogi, S.; Singh, A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front. Pharmacol. 2022, 13, 1042189. [Google Scholar] [CrossRef]
- Sen, S.; Ingale, S.L.; Kim, Y.W.; Kim, J.S.; Kim, K.H.; Lohakare, J.D.; Kim, E.K.; Kim, H.S.; Ryu, M.H.; Kwon, I.K.; et al. Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res. Vet. Sci. 2012, 93, 264–268. [Google Scholar] [CrossRef]
- Putri, S.N.A.; Utari, D.P.; Martati, E.; Putri, W.D.R. Study of sorghum [Sorghum bicolor (L.) Moench] grains fermentation with Lactobacillus plantarum ATCC 14977 on tannin content. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012037. [Google Scholar] [CrossRef]
- Engberg, R.M.; Hammershøj, M.; Johansen, N.F.; Abousekken, M.S.; Steenfeldt, S.; Jensen, B.B. Fermented feed for laying hens: Effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. Br. Poult. Sci. 2009, 50, 228–239. [Google Scholar] [CrossRef]
Type of Feed | Ingredients | Fermentation Technique | Inoculant | Breed | Age of Birds and Study Duration (Days) | Effect | Reference |
---|---|---|---|---|---|---|---|
Corn–SBM compound feed (moist mash) | Whole diet (100%) | LSF | Lactiplantibacillus plantarum | Ross 308 | Starter (13) Grower (26) Study (39) | Reduced FI for starters (44%) and growers (23%). Reduced daily WG (11%) and final BW (11%). Improved FCR in finisher phase (9%) and total period (5%). | [10] |
Corn–SBM compound feed (moist mash) | Whole diet (100%) | LSF | None (spontaneous fermentation) | Marshall | Grower (14) Study (42) | Increased daily WG (19%) and final BW (18%). No effect on daily FI and FCR. | [14] |
Corn–SBM compound feed (dry pellet) | Whole diet (100%) | LSF | Bacillus subtilis var. natto, Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus delbrueckii, Lacticaseibacillus casei, and Limosilactobacillus reuteri | Arbor Acres | Finisher (35) Study (35) | Reduced FCR (7%) for feed fermented with Bacillus spp. only. Increased WG (7%) for Bacillus-fermented pelleted feed. | [15] |
Corn–SBM with inclusion of fermented RSM (dry pellet) | Fermented RSM inclusion at 10% | SSF | Limosilactobacillus fermentum, Enterococcus faecium, Bacillus subtilis, and Saccharomyces cerevisae | Arbor Acres | Grower (42) Study (42) | Increased WG (7%) and reduced FCR (3%) in broilers fed fermented RSM compared with those fed unfermented RSM. | [16] |
Corn–SBM with inclusion of fermented or unfermented RSM (dry mash) | Fermented or unfermented RSM inclusion at 0, 5, 10, and 15% | SSF | Limosilactobacillus fermentum and Bacillus subtilis | Arbor Acres | Grower (21) Finisher (42) Study (42) | Reduced WG (14%) and increased FCR (12%) at 15% inclusion of fermented RSM compared with groups that received 0, 5, or 10% fermented RSM. No effect on WG, daily FI, and FCR at inclusion levels of 0–10%. | [17] |
Corn–SBM with inclusion of fermented CSM (dry pellets) | Fermented CSM inclusion at 0, 4, 8, and 12% | SSF | Bacillus subtilis | Yellow-feathered broilers | Starter (0–21) Finisher (22–42) Study (42) | Increased WGs of 3 and 4% at fermented CSM inclusion levels of 4 and 8%, respectively, compared with control (0% inclusion). | [18] |
Corn–SBM with inclusion of fermented or unfermented CSM (dry pellets) | Fermented or unfermented CSM inclusion at 0, 10, and 20% | SSF | Bacillus subtilis, Aspergillus oryzae, and Aspergillus niger | Ross 308 | Finisher (42) Study (42) | Improved FI, WG, and FCR compared with broilers fed unfermented CSM. | [19] |
Corn–SBM with inclusion of fermented or unfermented RSM (dry pellets) | SBM replaced with fermented or unfermented RSM at 50 or 100% | SSF | Lactobacillus acidophilus, Bacillus subtilis, and Aspergillus niger | Ross 308 | Finisher (42) Study (42) | 50% fermented RSM increased WGs by 6 and 24% and reduced FCRs by 6 and 18% compared with 50 and 100% unfermented RSM, respectively. | [20] |
Corn–SBM with SBM replaced with fermented or unfermented RSM (dry pellets) | SBM replaced with unfermented RSM at 0 or 5% or fermented RSM at 5 or 10% | SSF | Lactobacillus sp., Bacillus licheniformis, and Candida utilis | Yellow-feathered broilers | Finisher (42) Study (42) | 10% fermented RSM increased average daily WGs by 5 and 10% compared with 0 and 5% unfermented RSM, respectively. 10% fermented RSM reduced FCR by 7% compared with 5% unfermented RSM. | [21] |
Corn–SBM with SBM replaced with fermented or unfermented DORB (dry pellets) | Inclusion of fermented or unfermented DORB at 8% in basal diet | SSF | Saccharomyces cerevisiae | Cobb 500 | Finisher (42) Study (28) | 8% fermented DORB increased the WG by 5% compared with control. | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katu, J.K.; Tóth, T.; Ásványi, B.; Hatvan, Z.; Varga, L. Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review. Animals 2025, 15, 1957. https://doi.org/10.3390/ani15131957
Katu JK, Tóth T, Ásványi B, Hatvan Z, Varga L. Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review. Animals. 2025; 15(13):1957. https://doi.org/10.3390/ani15131957
Chicago/Turabian StyleKatu, Jim Kioko, Tamás Tóth, Balázs Ásványi, Zoltán Hatvan, and László Varga. 2025. "Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review" Animals 15, no. 13: 1957. https://doi.org/10.3390/ani15131957
APA StyleKatu, J. K., Tóth, T., Ásványi, B., Hatvan, Z., & Varga, L. (2025). Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review. Animals, 15(13), 1957. https://doi.org/10.3390/ani15131957