Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = antimicrobial-resistant gene (ARG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

17 pages, 3344 KiB  
Article
Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
by Ruizhao Jia, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang and Xiang Li
Biology 2025, 14(8), 1000; https://doi.org/10.3390/biology14081000 - 5 Aug 2025
Abstract
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns [...] Read more.
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 - 1 Aug 2025
Viewed by 209
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

18 pages, 1267 KiB  
Article
Characterization of Antibiotic Administration Factors Associated with Microbiome Disruption and Subsequent Antibiotic-Resistant Infection and Colonization Events in Acute Myeloid Leukemia Patients Receiving Chemotherapy
by Samantha Franklin, Corina Ramont, Maliha Batool, Stephanie McMahon, Pranoti Sahasrabhojane, John C. Blazier, Dimitrios P. Kontoyiannis, Yang Ni and Jessica Galloway-Peña
Antibiotics 2025, 14(8), 770; https://doi.org/10.3390/antibiotics14080770 - 30 Jul 2025
Viewed by 335
Abstract
Background: Broad-spectrum antibiotics are often used for suspected infections in patients with hematologic malignancies due to the risk of severe infections. Although antibiotic use can lead to antimicrobial resistance and microbiome dysbiosis, the effects of antibiotics on the microbiome and resistome in patients [...] Read more.
Background: Broad-spectrum antibiotics are often used for suspected infections in patients with hematologic malignancies due to the risk of severe infections. Although antibiotic use can lead to antimicrobial resistance and microbiome dysbiosis, the effects of antibiotics on the microbiome and resistome in patients with acute myeloid leukemia (AML) undergoing remission induction chemotherapy (RIC) are not well understood. Methods: Various statistical models were utilized to examine the effects of antibiotic administration on the microbiome and resistome over time, as well as differences in AR-infection (ARI) and colonization (ARC) by important CDC-threats in 119 AML patients. Results: A greater number of unique antibiotic classes administered correlated with a loss of unique antibiotic resistance genes (ARGs) (R = −0.39, p = 0.008). Specifically, although a greater number of oxazolidinone administrations was correlated with a greater loss of diversity (R = −0.58, p < 0.001), each additional day of linezolid reduced the risk of ARC by ~30% (HR: 0.663, p = 0.047) and decreased the odds of acquiring genes predicted to confer macrolide (HR: 0.50, p = 0.026) resistance. Conclusions: The number of antibiotic administrations and the types of antibiotics used can influence the risk of antibiotic resistance gene (ARG) expansion and ARC events in AML patients undergoing RIC. While certain antibiotics may reduce microbial diversity, they are not always linked to an increase in ARGs or ARC events. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 439
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

28 pages, 1387 KiB  
Article
Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance
by Edward Haynes, Roy Macarthur, Marc Kennedy, Chris Conyers, Hollie Pufal, Sam McGreig and John Walshaw
Microorganisms 2025, 13(8), 1766; https://doi.org/10.3390/microorganisms13081766 - 29 Jul 2025
Viewed by 162
Abstract
Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain [...] Read more.
Antimicrobial Resistance (AMR), i.e., the evolution of microbes to become resistant to chemicals used to control them, is a global public health concern that can make bacterial diseases untreatable. Inputs including antibiotics, metals, and biocides can create an environment in the agrifood chain that selects for AMR. Consumption of food represents a potential exposure route to AMR microbes and AMR genes (ARGs), which may be present in viable bacteria or on free DNA. Ready-to-eat (RTE) foods are of particular interest because they are eaten without further cooking, so AMR bacteria or ARGs that are present may be consumed intact. They also represent varied production systems (fresh produce, cooked meat, dairy, etc.). An evidence gap exists regarding the diversity and consumption of ARGs in RTE food, which this study begins to address. We sampled 1001 RTE products at retail sale in the UK, in proportion to their consumption by the UK population, using National Diet and Nutrition Survey data. Bacterial DNA content of sample extracts was assessed by 16S metabarcoding, and 256 samples were selected for metagenomic sequencing for identification of ARGs based on consumption and likely bacterial DNA content. A total of 477 unique ARGs were identified in the samples, including ARGs that may be involved in resistance to important antibiotics, such as colistin, fluoroquinolones, and carbapenems, although phenotypic AMR was not measured. Based on the incidence of ARGs in food types, ARGs are estimated to be present in a high proportion of average diets. ARGs were detected on almost all RTE food types tested (48 of 52), and some efflux pump genes are consumed in 97% of UK diets. Full article
Show Figures

Figure 1

37 pages, 1767 KiB  
Review
Antibiotics and Antibiotic Resistance Genes in the Environment: Dissemination, Ecological Risks, and Remediation Approaches
by Zhaomeng Wu, Xiaohou Shao and Qilin Wang
Microorganisms 2025, 13(8), 1763; https://doi.org/10.3390/microorganisms13081763 - 29 Jul 2025
Viewed by 438
Abstract
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the [...] Read more.
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the mechanisms of horizontal gene transfer (HGT) driven by MGEs such as plasmids, transposons, and integrons. We further conduct a comparative critical analysis of the effectiveness and limitations of antibiotics and ARGs remediation strategies for adsorption (biochar, activated carbon, carbon nanotubes), chemical degradation (advanced oxidation processes, Fenton-based systems), and biological treatment (microbial degradation, constructed wetlands). To effectively curb the spread of antimicrobial resistance and safeguard the sustainability of ecosystems, we propose an integrated “One Health” framework encompassing enhanced global surveillance (antibiotic residues and ARGs dissemination) as well as public education. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Graphical abstract

16 pages, 1234 KiB  
Article
Genomic Insights of Emerging Multidrug-Resistant OXA-48-Producing ST135 Proteus mirabilis
by Angeliki Mavroidi, Elisavet Froukala, Nick Spanakis, Aikaterini Michelaki, Maria Orfanidou, Vasiliki Koumaki and Athanasios Tsakris
Antibiotics 2025, 14(8), 750; https://doi.org/10.3390/antibiotics14080750 - 25 Jul 2025
Viewed by 296
Abstract
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. [...] Read more.
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. Methods: Characterization of Pm GR-1 was performed by the Vitek® Compact and Mass Spectrometry systems, antimicrobial susceptibility testing, detection of beta-lactamases, multilocus-sequence typing (MLST), and whole-genome sequencing (WGS). In silico prediction of mobile genetic elements (MGEs), genomic islands (GIs), antimicrobial resistance genes (ARGs) and virulence factors (VFs), and phylogenetic, core-genome SNP and comparative genomics analyses were executed using bioinformatic tools. Results: Pm GR-1 was isolated from a urine sample of an outpatient in a Greek hospital. It exhibited a multidrug-resistant phenotype, being susceptible only to amikacin and ceftazidime/avibactam. It co-carried several beta-lactamase genes on the chromosome (blaOXA-48, blaCTX-M-14, blaTEM-1) and a plasmid (blaTEM-2) and several other ARGs, but also mutations associated with quinolone resistance in the DNA gyrase and topoisomerase IV subunits. It belonged to the international clone ST135 that has also been detected among OXA-48-producing P. mirabilis strains from Germany and the USA. Pm GR-1 was genetically related to those from Germany, sharing highly similar MGEs, GIs, ARGs and VFs, including the chromosomal blaOXA-48 genetic structure, the O-antigen locus, the flagella locus, the MR/P fimbriae operon, and the urease gene cluster. Conclusions: To our knowledge, this is the first report from Greece of a blaOXA-48-possessing P. mirabilis strain. The emergence of blaOXA-48 among P. mirabilis strains of the international clone ST135 in different geographical regions is worrying. Close monitoring of these strains is required in One Health settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 525
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

12 pages, 722 KiB  
Review
Bacteriophages: Potential Candidates for the Dissemination of Antibiotic Resistance Genes in the Environment
by Shahid Sher, Husnain Ahmad Khan, Zaman Khan, Muhammad Sohail Siddique, Dilara Abbas Bukhari and Abdul Rehman
Targets 2025, 3(3), 25; https://doi.org/10.3390/targets3030025 - 22 Jul 2025
Viewed by 518
Abstract
The invention of antibacterial agents (antibiotics) was a significant event in the history of the human race, and this invention changed the way in which infectious diseases were cured; as a result, many lives have been saved. Recently, antibiotic resistance has developed as [...] Read more.
The invention of antibacterial agents (antibiotics) was a significant event in the history of the human race, and this invention changed the way in which infectious diseases were cured; as a result, many lives have been saved. Recently, antibiotic resistance has developed as a result of excessive use of antibiotics, and it has become a major threat to world health. ARGs are spread across biomes and taxa of bacteria via lateral or horizontal gene transfer (HGT), especially via conjugation, transformation, and transduction. This review concerns transduction, whereby bacteriophages or phages facilitate gene transfer in bacteria. Bacteriophages are just as common and many times more numerous than their bacterial prey, and these phages are much more influential in controlling the population of bacteria. It is estimated that 25% of overall genes of Escherichia coli have been copied by other species of bacteria due to the HGT process. Transduction may take place via a generalized or specialized mechanism, with phages being ubiquitous in nature. Phage and virus-like particle (VLP) metagenomics have uncovered the emergence of ARGs and mobile genetic elements (MGEs) of bacterial origins. These genes, when transferred to bacteria through transduction, confer resistance to antibiotics. ARGs are spread through phage-based transduction between the environment and bacteria related to people or animals, and it is vital that we further understand and tackle this mechanism in order to combat antimicrobial resistance. Full article
(This article belongs to the Special Issue Small-Molecule Antibiotic Drug Development)
Show Figures

Figure 1

13 pages, 7339 KiB  
Article
Unveiling Genomic Islands Hosting Antibiotic Resistance Genes and Virulence Genes in Foodborne Multidrug-Resistant Patho-Genic Proteus vulgaris
by Hongyang Zhang, Tao Wu and Haihua Ruan
Biology 2025, 14(7), 858; https://doi.org/10.3390/biology14070858 - 15 Jul 2025
Viewed by 378
Abstract
Proteus vulgaris is an emerging multidrug-resistant (MDR) foodborne pathogen that poses a significant threat to food safety and public health, particularly in aquaculture systems where antibiotic use may drive resistance development. Despite its increasing clinical importance, the genomic mechanisms underlying antimicrobial resistance (AMR) [...] Read more.
Proteus vulgaris is an emerging multidrug-resistant (MDR) foodborne pathogen that poses a significant threat to food safety and public health, particularly in aquaculture systems where antibiotic use may drive resistance development. Despite its increasing clinical importance, the genomic mechanisms underlying antimicrobial resistance (AMR) and virulence transmission in foodborne Proteus vulgaris remain poorly understood, representing a critical knowledge gap in One Health frameworks. To investigate its AMR and virulence transmission mechanisms, we analyzed strain P3M from Penaeus vannamei intestines through genomic island (GI) prediction and comparative genomics. Our study provides the first comprehensive characterization of mobile genetic elements in aquaculture-derived Proteus vulgaris, identifying two virulence-associated GIs (GI12/GI15 containing 25/6 virulence genes) and three AMR-linked GIs (GI7/GI13/GI16 carrying 1/1/5 antibiotic resistance genes (ARGs)), along with a potentially mobile ARG cluster flanked by IS elements (tnpA-tnpB), suggesting horizontal gene transfer capability. These findings elucidate previously undocumented genomic mechanisms of AMR and virulence dissemination in Proteus vulgaris, establishing critical insights for developing One Health strategies to combat antimicrobial resistance and virulence in foodborne pathogens. Full article
Show Figures

Figure 1

16 pages, 613 KiB  
Article
Isolation and Molecular Characterization of Antimicrobial-Resistant Bacteria from Vegetable Foods
by Annamaria Castello, Chiara Massaro, Erine Seghers, Clelia Ferraro, Antonella Costa, Rosa Alduina and Cinzia Cardamone
Pathogens 2025, 14(7), 682; https://doi.org/10.3390/pathogens14070682 - 10 Jul 2025
Viewed by 376
Abstract
Antimicrobial resistance (AMR) poses a growing threat to global health, and its spread through the food chain is gaining increasing attention. While AMR in food of animal origin has been extensively studied, less is known about its prevalence in plant-based foods, particularly fresh [...] Read more.
Antimicrobial resistance (AMR) poses a growing threat to global health, and its spread through the food chain is gaining increasing attention. While AMR in food of animal origin has been extensively studied, less is known about its prevalence in plant-based foods, particularly fresh and ready-to-eat (RTE) vegetables. This study investigated the occurrence of antimicrobial-resistant bacteria in fresh and RTE vegetables. Isolates were subjected to antimicrobial susceptibility testing and molecular analyses for the characterization of antimicrobial resistance genes (ARGs). A significant proportion of samples were found to harbor antimicrobial-resistant bacteria, including multidrug-resistant strains. Several ARGs, including those encoding extended-spectrum β-lactamases (ESBLs) and resistance to critically important antimicrobials, were detected. The findings point to environmental contamination—potentially originating from wastewater reuse and agricultural practices—as a likely contributor to AMR dissemination in vegetables. The presence of antimicrobial-resistant bacteria and ARGs in fresh produce raises concerns about food safety and public health. The current regulatory framework lacks specific criteria for monitoring AMR in vegetables, highlighting the urgent need for surveillance programs and risk mitigation strategies. This study contributes to a better understanding of AMR in the plant-based food sector and supports the implementation of a One Health approach to address this issue. Full article
Show Figures

Figure 1

23 pages, 3213 KiB  
Article
Multidrug Resistance and Virulence Traits of Salmonella enterica Isolated from Cattle: Genotypic and Phenotypic Insights
by Nada A. Fahmy, Sumin Karna, Angel Bhusal, Ajran Kabir, Erdal Erol and Yosra A. Helmy
Antibiotics 2025, 14(7), 689; https://doi.org/10.3390/antibiotics14070689 - 8 Jul 2025
Viewed by 634
Abstract
Background/Objective: Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide and presents a significant One Health concern due to zoonotic transmission. Although antibiotic therapy remains a standard approach for treating salmonellosis in severe cases in animals, the widespread misuse of antibiotics has [...] Read more.
Background/Objective: Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide and presents a significant One Health concern due to zoonotic transmission. Although antibiotic therapy remains a standard approach for treating salmonellosis in severe cases in animals, the widespread misuse of antibiotics has contributed to the emergence of multidrug-resistant (MDR) Salmonella strains. This study provides insights into the genotypic and phenotypic characteristics among Salmonella isolates from necropsied cattle. Methods: A total of 1008 samples were collected from necropsied cattle. Salmonella enterica subspecies were identified by MALDI-TOF MS and subsequently confirmed by serotyping. The biofilm-forming ability of the isolated bacteria was assessed using a crystal violet assay. The motility of the isolates was assessed on soft agar plates. Additionally, the antimicrobial resistance genes (ARGs) and virulence genes were investigated. Antimicrobial resistance patterns were investigated against 19 antibiotics representing 9 different classes. Results:Salmonella species were isolated and identified in 27 necropsied cattle. Salmonella Dublin was the most prevalent serotype (29.6%). Additionally, all the isolates were biofilm producers at different levels of intensity, and 96.3% of the isolates exhibited both swarming and swimming motility. Furthermore, virulence genes, including invA, hilA, fimA, and csgA, were detected in all the isolates. The highest resistance was observed to macrolides (azithromycin and clindamycin) (100%), followed by imipenem (92.6%), and chloramphenicol (85.2%). All isolates were multidrug-resistant, with a multiple antibiotic resistance (MAR) index ranging between 0.32 and 0.74. The aminoglycoside resistance gene aac(6′)-Ib was detected in all the isolates (100%), whereas the distribution of other antimicrobial resistance genes (ARGs) varied among the isolates. Conclusions: The increasing prevalence of MDR Salmonella poses a significant public health risk. These resistant strains can reduce the effectiveness of standard treatments and elevate outbreak risks. Strengthening surveillance and regulating antibiotic use in livestock are essential to mitigating these threats. Full article
Show Figures

Figure 1

12 pages, 1312 KiB  
Article
Antimicrobial Resistance in the Aconcagua River, Chile: Prevalence and Characterization of Resistant Bacteria in a Watershed Under High Anthropogenic Contamination Pressure
by Nicolás González-Rojas, Diego Lira-Velásquez, Richard Covarrubia-López, Johan Plaza-Sepúlveda, José M. Munita, Mauricio J. Carter and Jorge Olivares-Pacheco
Antibiotics 2025, 14(7), 669; https://doi.org/10.3390/antibiotics14070669 - 2 Jul 2025
Viewed by 476
Abstract
Background: Antimicrobial resistance (AMR) is a growing global health concern, driven in part by the environmental release of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Aquatic systems, particularly those exposed to urban, agricultural, and industrial activity, are recognized as hotspots for [...] Read more.
Background: Antimicrobial resistance (AMR) is a growing global health concern, driven in part by the environmental release of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Aquatic systems, particularly those exposed to urban, agricultural, and industrial activity, are recognized as hotspots for AMR evolution and transmission. In Chile, the Aconcagua River—subject to multiple anthropogenic pressures—offers a representative model for studying the environmental dimensions of AMR. Methods: Thirteen surface water samples were collected along the Aconcagua River basin in a single-day campaign to avoid temporal bias. Samples were filtered through 0.22 μm membranes and cultured on MacConkey agar, either unsupplemented or supplemented with ceftazidime (CAZ) or ciprofloxacin (CIP). Isolates were purified and identified using MALDI-TOF mass spectrometry. Antibiotic susceptibility was evaluated using the Kirby–Bauer disk diffusion method in accordance with CLSI guidelines. Carbapenemase activity was assessed using the Blue-Carba test, and PCR was employed for the detection of the blaVIM, blaKPC, blaNDM, and blaIMP genes. Results: A total of 104 bacterial morphotypes were isolated; 80 were identified at the species level, 5 were identified at the genus level, and 19 could not be taxonomically assigned using MALDI-TOF. Pseudomonas (40 isolates) and Aeromonas (25) were the predominant genera. No growth was observed on CIP plates, while 24 isolates were recovered from CAZ-supplemented media, 87.5% of which were resistant to aztreonam. Five isolates exhibited resistance to carbapenems; two tested positive for carbapenemase activity and carried the blaVIM gene. Conclusions: Our results confirm the presence of clinically significant resistance mechanisms, including blaVIM, in environmental Pseudomonas spp. from the Aconcagua River. These findings highlight the need for environmental AMR surveillance and reinforce the importance of adopting a One Health approach to antimicrobial stewardship and wastewater regulation. Full article
Show Figures

Figure 1

37 pages, 7888 KiB  
Article
Comprehensive Analysis of E. coli, Enterococcus spp., Salmonella enterica, and Antimicrobial Resistance Determinants in Fugitive Bioaerosols from Cattle Feedyards
by Ingrid M. Leon, Brent W. Auvermann, K. Jack Bush, Kenneth D. Casey, William E. Pinchak, Gizem Levent, Javier Vinasco, Sara D. Lawhon, Jason K. Smith, H. Morgan Scott and Keri N. Norman
Appl. Microbiol. 2025, 5(3), 63; https://doi.org/10.3390/applmicrobiol5030063 - 2 Jul 2025
Viewed by 658
Abstract
Antimicrobial use in food animals selects for antimicrobial-resistant (AMR) bacteria, which most commonly reach humans via the food chain. However, AMR bacteria can also escape the feedyard via agricultural runoff, manure used as crop fertilizer, and even dust. A study published in 2015 [...] Read more.
Antimicrobial use in food animals selects for antimicrobial-resistant (AMR) bacteria, which most commonly reach humans via the food chain. However, AMR bacteria can also escape the feedyard via agricultural runoff, manure used as crop fertilizer, and even dust. A study published in 2015 reported AMR genes in dust from cattle feedyards; however, one of the study’s major limitations was the failure to investigate gene presence in viable bacteria, or more importantly, viable bacteria of importance to human health. Our main objective was to investigate the presence and quantity of viable bacteria and antimicrobial-resistant (AMR) determinants in fugitive bioaerosols from cattle feedyards in the downwind environment. Six bioaerosol sampling campaigns were conducted at three commercial beef cattle feedyards to assess variability in viable bacteria and AMR determinants associated with geographic location, meteorological conditions, and season. Dust samples were collected using four different sampling methods, and spiral plated in triplicate on both non-selective and antibiotic-selective media. Colonies of total aerobic bacteria, Enterococcus spp., Salmonella enterica, and Escherichia coli were enumerated. Viable bacteria, including AMR bacteria, were identified in dust from cattle feedyards. Bacteria and antimicrobial resistance genes (ARGs via qPCR) were mainly found in downwind samples. Total suspended particles (TSPs) and impinger samples yielded the highest bacterial counts. Genes encoding beta-lactam resistance (blaCMY-2 and blaCTX-M) were detected while the most common ARG was tet(M). The predominant Salmonella serovar identified was Lubbock. Further research is needed to assess how far viable AMR bacteria can travel in the ambient environment downwind from cattle feedyards, to model potential public health risks. Full article
Show Figures

Figure 1

Back to TopTop