Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Strategy
2.2. Sampling
2.3. DNA Extraction
2.3.1. Dairy Samples
2.3.2. Produce Samples
2.3.3. Cheese Samples
2.4. 16S Sequencing
2.4.1. PCR Amplification
2.4.2. Sequence Library Preparation
2.4.3. MiSeq 16S Amplicon Sequencing
2.5. Sample Selection for Metagenomic Sequencing
2.6. Metagenomic Sequence Library Preparation and Sequencing
2.7. Bioinformatic Analysis
2.7.1. 16S Metabarcoding
2.7.2. Quality Control and Host Sequence Removal from Metagenomics Data
2.7.3. Identification of ARG Sequence Fragments in the Metagenomics Data
2.7.4. RGI/CARD Analysis
2.7.5. Filtering of RGI Results
- The “standard” filters consisted of an analysis of every mapped read in order to identify the least convincing matches and discard them.
- For one particular category of ARGs only, we subsequently applied a nucleotide sequence identity filter (the “variant/mutant type” filter).
- Finally, for each ARG, we applied a filter defined by the number of read pairs matched to it within each sample.
- Location of matching and mismatching read segments;
- Lengths of matching read segments and any mismatching segments;
- Uniqueness of the mapping;
- Plausibility of the sequences themselves irrespective of whether the read and reference sequences were very similar;
- Sequence identity of the matching read segments.
- Absence of any homopolymers longer than a maximum threshold (12 bp);
- Sequence entropy of a magnitude greater than a minimum threshold (1.1);
- MAPQ score of at least a minimum threshold (2);
- Total length of all unmatched segments does not exceed a threshold proportion (25%) of the total unmatched + matched segments’ length;
- Matched segment length of at least a minimum threshold (45 bp);
- Total matched segment length of both reads of the pair of at least a minimum threshold (75 bp);
- Conditional upon the AMR type (as annotated by the ARO term), a minimum percentage identity between the matched segment and the aligned reference segment (if the ARG is annotated as ARO:0000031 or as any descendant ARO term, then the minimum identity is 100%; for all other ARGs, no minimum identity is required).
2.8. Exposure Modelling
2.8.1. Dietary Consumption Data
2.8.2. Assumptions Underlying the Sampling Design
2.8.3. Possible Measures Related to AMR Intakes in the UK Diet
2.8.4. Incidence Summaries at Sample/Food Level
- Number of ARGs in each single sample and the between-sample range seen in this number.
- Number of unique ARGs or ARG families found across all samples of a given food type.
2.8.5. Incidence: Total UK Diet
2.8.6. Prevalence Calculations, per Food
2.8.7. Frequency (Relative Number of Samples) of a Given ARG in a Food-Specific Dataset
2.8.8. Prevalence Calculations, Population Level
3. Results
3.1. Sampling Strategy
3.2. Sampling
3.3. 16S Sequencing
3.4. Metagenomic Sequencing
3.4.1. Overview of Metagenomic Read Data
3.4.2. ARG Sequence Detection Using RGI/CARD
3.4.3. Filtering of RGI-/CARD-Identified ARGs
3.4.4. DNA Sequence Identity Distribution
3.4.5. Assessing the Use of 16S Metabarcoding for Selecting Samples for Metagenomic Sequencing
3.5. Estimation of UK Population Intakes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | antimicrobial resistance |
ARG | antimicrobial resistance gene |
ARO | antibiotic resistance ontology |
ASV | amplicon sequence variant |
BAM | binary alignment map |
bp | basepair |
CARD | Comprehensive Antibiotic Resistance Database |
CIA | critically important antimicrobial |
DNA | deoxyribonucleic acid |
dNTP | deoxynucleoside triphosphates |
dsDNA | double-stranded deoxyribonucleic acid |
eDNA | environmental DNA |
NDNS | national diet and nutrition survey |
PCR | polymerase chain reaction |
RGI | resistance gene identifier |
RTE | ready-to-eat |
SAM | sequence alignment map |
TE | tris-ethylenediaminetetraacetic acid |
UK | United Kingdom |
References
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.A.; Frewer, L.J.; Jones, G.; Brereton, P.A.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131–147. [Google Scholar] [CrossRef]
- van Bunnik, B.A.D.; Woolhouse, M.E.J. Modelling the impact of curtailing antibiotic usage in food animals on antibiotic resistance in humans. R. Soc. Open Sci. 2017, 4, 161067. [Google Scholar] [CrossRef]
- APHA. EU Harmonised Surveillance of Antimicrobial Resistance (AMR) in E. coli Bacteria from Retail Meats (Year 5—Beef and Pork, 2019); Animal and Plant Health Agency: Washington, DC, USA, 2020. [Google Scholar]
- APHA. EU Harmonised Surveillance of Antimicrobial Resistance (AMR) in E. coli from Retail Meats in UK (2018—Year 4, Chicken); Animal and Plant Health Agency: Washington, DC, USA, 2019. [Google Scholar]
- Saini, V.; McClure, J.T.; Scholl, D.T.; DeVries, T.J.; Barkema, H.W. Herd-level relationship between antimicrobial use and presence or absence of antimicrobial resistance in gram-negative bovine mastitis pathogens on Canadian dairy farms. J. Dairy Sci. 2013, 96, 4965–4976. [Google Scholar] [CrossRef] [PubMed]
- McManus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.-L.; Singh, B.K.; Yan, H.; Chen, D.; He, J.-Z. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 2019, 130, 104912. [Google Scholar] [CrossRef]
- Glibota, N.; Grande Burgos, M.J.; Gálvez, A.; Ortega, E. Copper tolerance and antibiotic resistance in soil bacteria from olive tree agricultural fields routinely treated with copper compounds. J. Sci. Food Agric. 2019, 99, 4677–4685. [Google Scholar] [CrossRef]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 2020, 10, 21878. [Google Scholar] [CrossRef]
- Khan, S.; Beattie, T.K.; Knapp, C.W. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere 2016, 152, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.F.; Zhang, M.L.; Zhang, S.H.; Yu, X. Can chlorination co-select antibiotic-resistance genes? Chemosphere 2016, 156, 412–419. [Google Scholar] [CrossRef]
- Murray, A.K.; Zhang, L.H.; Snape, J.; Gaze, W.H. Comparing the selective and co-selective effects of different antimicrobials in bacterial communities. Int. J. Antimicrob. Agents 2019, 53, 767–773. [Google Scholar] [CrossRef]
- Oniciuc, E.A.; Likotrafiti, E.; Alvarez-Molina, A.; Prieto, M.; Santos, J.A.; Alvarez-Ordonez, A. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes 2018, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cao, W.; Liang, S.; Yamasaki, S.; Chen, X.; Shi, L.; Ye, L. Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Sci. Rep. 2020, 10, 15175. [Google Scholar] [CrossRef]
- NatCen Social Research MEWL. National Diet and Nutrition Survey Years 1–9, 2008/09-2016/17, 15th ed.; UK Data Service: Colchester, UK, 2019. [Google Scholar]
- Arcuri, E.F.; El Sheikha, A.F.; Rychlik, T.; Piro-Métayer, I.; Montet, D. Determination of cheese origin by using 16S rDNA fingerprinting of bacteria communities by PCR–DGGE: Preliminary application to traditional Minas cheese. Food Control 2013, 30, 1–6. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015, 75, 129–137. [Google Scholar] [CrossRef]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Walters, W.A.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.E.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. MSystems 2016, 1, e00009-15. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Joshi, N.A.; Fass, J.N. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files, Version 1.33; 2011. Available online: https://github.com/najoshi/sickle?tab=readme-ov-file#citation (accessed on 22 May 2025).
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- De-Kayne, R.; Frei, D.; Greenway, R.; Mendes, S.L.; Retel, C.; Feulner, P.G.D. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol. Ecol. Resour. 2021, 21, 653–660. [Google Scholar] [CrossRef]
- Wilson, C.A.; Kreychman, J.; Gerstein, M. Assessing annotation transfer for genomics: Quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J. Mol. Biol. 2000, 297, 233–249. [Google Scholar] [CrossRef]
- McArthur, A.G.; Wright, G.D. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr. Opin. Microbiol. 2015, 27, 45–50. [Google Scholar] [CrossRef]
- Perry, J.A.; Westman, E.L.; Wright, G.D. The antibiotic resistome: What’s new? Curr. Opin. Microbiol. 2014, 21, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed]
- Coyne, S.; Rosenfeld, N.; Lambert, T.; Courvalin, P.; Perichon, B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4389–4393. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; De Schaetzen, M.-A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial Resistance in the Food Chain: A Review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef] [PubMed]
- Le Devendec, L.; Jouy, E.; Kempf, I. Evaluation of resistance gene transfer from heat-treated Escherichia coli. Int. J. Food Microbiol. 2018, 270, 39–43. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Mercanoglu Taban, B. A State-of-Art Review on Multi-Drug Resistant Pathogens in Foods of Animal Origin: Risk Factors and Mitigation Strategies. Front. Microbiol. 2019, 10, 2091. [Google Scholar] [CrossRef]
- Colavecchio, A.; Cadieux, B.; Lo, A.; Goodridge, L.D. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family—A Review. Front. Microbiol. 2017, 8, 1108. [Google Scholar] [CrossRef]
- Jebri, S.; Rahmani, F.; Hmaied, F. Bacteriophages as antibiotic resistance genes carriers in agro-food systems. J. Appl. Microbiol. 2021, 130, 688–698. [Google Scholar] [CrossRef]
- Masters, C.I.; Miles, C.A.; Mackey, B.M. Survival and biological activity of heat damaged DNA. Lett. Appl. Microbiol. 1998, 27, 279–282. [Google Scholar] [CrossRef]
- Koncan, R.; García-Albiach, R.; Bravo, D.; Cantón, R.; Baquero, F.; Cornaglia, G.; del Campo, R. P571 The fate of antibiotic resistance genes in cooked meat. Int. J. Antimicrob. Agents 2007, 29, S130. [Google Scholar] [CrossRef]
- Taher, E.M.; Hemmatzadeh, F.; Aly, S.A.; Elesswy, H.A.; Petrovski, K.R. Survival of staphylococci and transmissibility of their antimicrobial resistance genes in milk after heat treatments. LWT 2020, 129, 109584. [Google Scholar] [CrossRef]
- Shah, S.S.; Ruth, A.; Coffin, S.E. Infection due to Moraxella osloensis: Case report and review of the literature. Clin. Infect. Dis. 2000, 30, 179–181. [Google Scholar] [CrossRef]
- Gagnard, J.-C.; Hidri, N.; Grillon, A.; Jesel, L.; Denes, E. Moraxella osloensis, an emerging pathogen of endocarditis in immunocompromised patients? Swiss Med. Wkly. 2015, 145, w14185. [Google Scholar] [CrossRef]
- Roh, K.H.; Kim, C.K.; Koh, E.; Kim, M.S.; Yong, D.; Park, S.C.; Lee, K.; Chong, Y. Three cases of Moraxella osloensis meningitis: A difficult experience in species identification and determination of clinical significance. J. Korean Med. Sci. 2010, 25, 501–504. [Google Scholar] [CrossRef]
- Wei, W.; Srinivas, S.; Lin, J.; Tang, Z.; Wang, S.; Ullah, S.; Kota, V.G.; Feng, Y. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis. PLoS Genet. 2018, 14, e1007389. [Google Scholar] [CrossRef]
- Hammerl, J.A.; Borowiak, M.; Schmoger, S.; Shamoun, D.; Grobbel, M.; Malorny, B.; Tenhagen, B.-A.; Käsbohrer, A. mcr-5 and a novel mcr-5.2 variant in Escherichia coli isolates from food and food-producing animals, Germany, 2010 to 2017. J. Antimicrob. Chemother. 2018, 73, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
- Nang, S.C.; Li, J.; Velkov, T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit. Rev. Microbiol. 2019, 45, 131–161. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 2009, 11, 2970–2988. [Google Scholar] [CrossRef] [PubMed]
- Kashuba, E.; Dmitriev, A.A.; Kamal, S.M.; Melefors, O.; Griva, G.; Romling, U.; Ernberg, I.; Kashuba, V.; Brouchkov, A. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb. Ecol. Health Dis. 2017, 28, 1345574. [Google Scholar] [CrossRef]
- Ubukata, K.; Nonoguchi, R.; Matsuhashi, M.; Konno, M. Expression and Inducibility in Staphylococcus aureus of the mecA Gene, Which Encodes a Methicillin-Resistant S. aureus-Specific Penicillin-Binding Protein. J. Bacteriol. 1989, 171, 2882–2885. [Google Scholar] [CrossRef]
- Deurenberg, R.H.; Stobberingh, E.E. The evolution of Staphylococcus aureus. Infect. Genet. Evol. 2008, 8, 747–763. [Google Scholar] [CrossRef]
- Lv, L.; Wan, M.; Wang, C.; Gao, X.; Yang, Q.; Partridge, S.R.; Wang, Y.; Zong, Z.; Doi, Y.; Shen, J.; et al. Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Reistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae. mBio 2020, 11, e02930-19. [Google Scholar] [CrossRef] [PubMed]
- Auda, I.G.; Ali Salman, I.M.; Odah, J.G. Efflux pumps of Gram-negative bacteria in brief. Gene Rep. 2020, 20, 100666. [Google Scholar] [CrossRef]
- Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.B.; Martinez, J.L. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Stogios, P.J.; Savchenko, A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef]
- Hamilton, A.; Harper, S.J.; Critzer, F. Optimization of a Method for the Concentration of Genetic Material in Bacterial and Fungal Communities on Fresh Apple Peel Surfaces. Microorganisms 2020, 8, 1480. [Google Scholar] [CrossRef]
Rinse Outside of Whole Fruit/Slice of Meat or 25 g if Sample Weighs Less e.g., Blueberries (25 mL Rinse Buffer) | Peel and Rinse Whole Interior (25 mL Rinse Buffer) | Cut into with Scalpel and Rinse 25 g Interior Flesh | Juice Centrifuge Sample Directly |
---|---|---|---|
Apples | Banana | Melon | Orange Juice 1 mL |
Pears | Orange | Watermelon | Apple Juice 15 mL |
Nectarines | Small citrus (e.g., satsuma/mandarin/clementine) | Pineapple | |
Peaches | White onion | Kiwi | |
Plums | Grapefruit—used 50 mL rinse buffer | Mango | |
Strawberries | Carrot | Avocado | |
Blueberries | |||
Raspberries | |||
Cherry tomatoes/Tomatoes | |||
Cucumber—used 50 mL rinse buffer | |||
Lettuce | |||
Red pepper | |||
White/black grapes | |||
Ham | |||
Corned beef | |||
Raisins | |||
Olives |
Food Category | ARGs in Each Sample | Number in Both Samples | Number in Either or Both Samples | Poisson Test |
---|---|---|---|---|
apples | 85, 79 | 56 | 108 | 1 |
blueberries | 57, 25 | 18 | 64 | 0.00535 |
cherry tomatoes | 154, 109 | 99 | 164 | 0.059 |
double cream | 1, 1 | 1 | 1 | 1 |
iceberg lettuce | 9, 55 | 8 | 56 | 3.89 × 10−8 |
lactose-free semi-skimmed milk | 25, 21 | 18 | 28 | 1 |
oranges | 27, 21 | 14 | 34 | 1 |
spreadable butter | 10, 11 | 8 | 13 | 1 |
tomatoes | 193, 168 | 149 | 212 | 1 |
unsweetened yogurt | 7, 5 | 4 | 8 | 1 |
white onions | 107, 139 | 94 | 152 | 0.383 |
Food Category | Summary Based on Number of ARGs Per Sample | Number of Samples | ||||
---|---|---|---|---|---|---|
Mean | Median | Min | Max | Total Samples | Samples with 1 or More ARG | |
semi-skimmed milk | 2.9 | 0 | 0 | 56 | 69 | 30 |
whole milk | 3.3 | 1 | 0 | 49 | 42 | 22 |
bananas | 13.5 | 5.5 | 0 | 68 | 16 | 15 |
apples | 78.1 | 76 | 47 | 114 | 15 | 15 |
orange juice pasteurised | 31.3 | 36 | 3 | 45 | 7 | 7 |
tomatoes | 63.0 | 26 | 3 | 193 | 8 | 8 |
skimmed milk | 7.6 | 1 | 0 | 30 | 7 | 4 |
cheddar cheese | 5.8 | 6 | 5 | 6 | 4 | 4 |
pears | 82.4 | 76 | 58 | 129 | 5 | 5 |
small citrus | 36.8 | 30 | 7 | 80 | 4 | 4 |
cucumbers | 102.7 | 98 | 84 | 126 | 3 | 3 |
oranges | 27.2 | 27 | 12 | 44 | 5 | 5 |
strawberries | 29.0 | 29 | 29 | 29 | 1 | 1 |
apple juice pasteurised | 61.5 | 61.5 | 27 | 96 | 2 | 2 |
ham not smoked | 6.0 | 0 | 0 | 24 | 4 | 1 |
white grapes | 80.5 | 80.5 | 46 | 115 | 2 | 2 |
melon | 0.0 | 0 | 0 | 0 | 1 | 0 |
salted butter | 10.5 | 10.5 | 3 | 18 | 2 | 2 |
soya milk sweetened | 4.5 | 4.5 | 3 | 6 | 2 | 2 |
carrots | 22.0 | 22 | 22 | 22 | 1 | 1 |
lettuce | 57.7 | 27 | 21 | 125 | 3 | 3 |
unsweetened yoghurt | 6.0 | 6 | 5 | 7 | 2 | 2 |
vanilla ice cream | 74.0 | 74 | 39 | 109 | 2 | 2 |
black grapes | 47.0 | 47 | 43 | 51 | 2 | 2 |
reduced-fat spread | 0.0 | 0 | 0 | 0 | 2 | 0 |
probiotic yoghurt drink | 1.0 | 1 | 1 | 1 | 1 | 1 |
one-percent milk | 1.0 | 1 | 1 | 1 | 1 | 1 |
low-fat unsweetened yoghurt | 5.0 | 5 | 5 | 5 | 1 | 1 |
pineapple | 6.0 | 6 | 6 | 6 | 1 | 1 |
plums | 68.0 | 68 | 51 | 85 | 2 | 2 |
white onions | 124.7 | 128 | 107 | 139 | 3 | 3 |
orange juice freshly squeezed | 2.0 | 2 | 2 | 2 | 1 | 1 |
nectarines | 72.0 | 72 | 72 | 72 | 1 | 1 |
mangoes | 2.3 | 3 | 0 | 4 | 3 | 2 |
kiwi fruit | 0.8 | 0 | 0 | 3 | 4 | 1 |
cherry tomatoes | 131.5 | 131.5 | 109 | 154 | 2 | 2 |
fat spread | 0.0 | 0 | 0 | 0 | 1 | 0 |
avocado | 10.3 | 0 | 0 | 31 | 3 | 1 |
peaches | 74.0 | 74 | 74 | 74 | 1 | 1 |
raspberries | 49.0 | 49 | 49 | 49 | 1 | 1 |
blueberries | 41.0 | 41 | 25 | 57 | 2 | 2 |
red peppers | 71.0 | 71 | 71 | 71 | 1 | 1 |
corned beef | 29.0 | 29 | 8 | 50 | 2 | 2 |
spreadable butter | 10.5 | 10.5 | 10 | 11 | 2 | 2 |
soya milk unsweetened | 9.0 | 9 | 9 | 9 | 1 | 1 |
raisins | 23.0 | 23 | 23 | 23 | 1 | 1 |
iceberg lettuce | 32.0 | 32 | 9 | 55 | 2 | 2 |
lactose-free semi-skimmed milk | 23.0 | 23 | 21 | 25 | 2 | 2 |
watermelon | 0.0 | 0 | 0 | 0 | 1 | 0 |
double cream | 1.0 | 1 | 1 | 1 | 2 | 2 |
grapefruit | 119.0 | 119 | 119 | 119 | 1 | 1 |
olives in brine | 58.5 | 58.5 | 29 | 88 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haynes, E.; Macarthur, R.; Kennedy, M.; Conyers, C.; Pufal, H.; McGreig, S.; Walshaw, J. Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance. Microorganisms 2025, 13, 1766. https://doi.org/10.3390/microorganisms13081766
Haynes E, Macarthur R, Kennedy M, Conyers C, Pufal H, McGreig S, Walshaw J. Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance. Microorganisms. 2025; 13(8):1766. https://doi.org/10.3390/microorganisms13081766
Chicago/Turabian StyleHaynes, Edward, Roy Macarthur, Marc Kennedy, Chris Conyers, Hollie Pufal, Sam McGreig, and John Walshaw. 2025. "Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance" Microorganisms 13, no. 8: 1766. https://doi.org/10.3390/microorganisms13081766
APA StyleHaynes, E., Macarthur, R., Kennedy, M., Conyers, C., Pufal, H., McGreig, S., & Walshaw, J. (2025). Metagenomic Analysis of Ready-to-Eat Foods on Retail Sale in the UK Identifies Diverse Genes Related to Antimicrobial Resistance. Microorganisms, 13(8), 1766. https://doi.org/10.3390/microorganisms13081766