Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (63,428)

Search Parameters:
Keywords = anti-oxidative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7880 KB  
Article
Integrated Evaluation of Alkaline Tolerance in Soybean: Linking Germplasm Screening with Physiological, Biochemical, and Molecular Responses
by Yongguo Xue, Zichun Wei, Chengbo Zhang, Yudan Wang, Dan Cao, Xiaofei Tang, Yubo Yao, Wenjin He, Chao Chen, Zaib_un Nisa and Xinlei Liu
Plants 2026, 15(2), 222; https://doi.org/10.3390/plants15020222 (registering DOI) - 10 Jan 2026
Abstract
Soybean (Glycine max L.) is an essential food and economic crop in China, yet its growth and yield are severely constrained by saline–alkali stress. A saline–alkali soil exacerbates root absorption barriers, leading to 30–50% yield losses. Understanding the mechanisms underlying alkali tolerance [...] Read more.
Soybean (Glycine max L.) is an essential food and economic crop in China, yet its growth and yield are severely constrained by saline–alkali stress. A saline–alkali soil exacerbates root absorption barriers, leading to 30–50% yield losses. Understanding the mechanisms underlying alkali tolerance is therefore crucial for developing stress-resilient soybean varieties and improving the productivity of saline–alkali land. In our previous study, we evaluated 99 soybean germplasms from Northeast China and obtained the alkali-tolerant varieties HN48 and HN69, along with the alkali-sensitive varieties HNWD4 and HN83. In this study, fifteen-day-old soybean seedlings were subjected to (30 mM NaHCO3) alkali stress for 72 h, and whole plants were sampled to assess their morphology and physiology, while leaf tissues were harvested for biochemical analysis. For transcriptomic analysis, soybean seedlings were exposed to alkali stress (50 mM NaHCO3, pH 9.0) for 6 h, and leaf and root tissues were harvested for RNA sequencing. The results showed that alkali-tolerant varieties mitigated these effects by suppressing excessive ROS generation by 55–63%, decreasing malondialdehyde (MDA) accumulation by 37–39%, and increasing photosynthetic efficiency by 18.3%, as well as accumulating more osmoprotectants and activating antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) under alkaline stress. Transcriptome analysis showed that the alkali-tolerant variety HN69 exhibited cultivar-specific enrichment of metabolism cytochrome P450, estrogen signaling, and GnRH signaling pathways under alkali stress. These results collectively indicate that alkali-tolerant soybean varieties adapt to alkali stress through coordinated multi-pathway responses, with differential pathway enrichment potentially underlying the variation in alkali tolerance between cultivars. Overall, this study elucidates the physiological and molecular mechanisms of alkali tolerance in soybean, providing a theoretical foundation for breeding stress-tolerant germplasms. Full article
Show Figures

Figure 1

22 pages, 1174 KB  
Review
Application of Graphene Oxide Nanomaterials in Crop Plants and Forest Plants
by Yi-Xuan Niu, Xin-Yu Yao, Jun Hyok Won, Zi-Kai Shen, Chao Liu, Weilun Yin, Xinli Xia and Hou-Ling Wang
Forests 2026, 17(1), 94; https://doi.org/10.3390/f17010094 (registering DOI) - 10 Jan 2026
Abstract
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, [...] Read more.
Graphene oxide (GO) is a carbon-based nanomaterial explored for agricultural and forestry uses, but plant responses are strongly subject to both the dose and the route of exposure. We summarized recent studies with defined graphene oxide (GO) exposures by seed priming, foliar delivery, and root or soil exposure, while comparing annual crops with woody forest plants. Mechanistic progress points to a shared physicochemical basis: surface oxygen groups and sheet geometry reshape water and ion microenvironments at the soil–seed and soil–rhizosphere interfaces, and many reported shifts in antioxidant enzymes and hormone pathways likely represent downstream stress responses. In crops, low-to-moderate doses most consistently improve germination, root architecture, and tolerance to salinity or drought stress, whereas high doses or prolonged root exposure can cause root surface coating, oxidative injury, and photosynthetic inhibition. In forest plants, evidence remains limited and often relies on seedlings or tissue culture. For forest plants with long life cycles, processes such as soil persistence, aging, and multi-seasonal carry-over become key factors, especially in nurseries and restoration substrates. The available data indicate predominant root retention with generally limited root-to-shoot translocation, so residues in edible and medicinal organs remain insufficiently quantified under realistic-use patterns. This review provides a scenario-based framework for crop- and forestry-specific safe-dose windows and proposes standardized endpoints for long-term fate and ecological risk assessment. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
22 pages, 2379 KB  
Article
Release of Bioactive Peptides from Whey Protein During In Vitro Digestion and Their Effect on CCK Secretion in Enteroendocrine Cells: An In Silico and In Vitro Approach
by Anaís Ignot-Gutiérrez, Orlando Arellano-Castillo, Gloricel Serena-Romero, Mayvi Alvarado-Olivarez, Daniel Guajardo-Flores, Armando J. Martínez and Elvia Cruz-Huerta
Molecules 2026, 31(2), 238; https://doi.org/10.3390/molecules31020238 (registering DOI) - 10 Jan 2026
Abstract
During gastrointestinal digestion, dietary proteins are hydrolyzed into peptides and free amino acids that modulate enteroendocrine function and satiety-related hormone secretion along the gut–brain axis, thereby contributing to obesity prevention. We investigated whey protein concentrate (WPC) as a source of bioactive peptides and [...] Read more.
During gastrointestinal digestion, dietary proteins are hydrolyzed into peptides and free amino acids that modulate enteroendocrine function and satiety-related hormone secretion along the gut–brain axis, thereby contributing to obesity prevention. We investigated whey protein concentrate (WPC) as a source of bioactive peptides and evaluated the effects of its digests on cholecystokinin (CCK) secretion in STC-1 enteroendocrine cells by integrating the standardized INFOGEST in vitro digestion protocol, peptidomics (LC–MS/MS), and in silico bioactivity prediction. In STC-1 cells, the <3 kDa intestinal peptide fraction exhibited the strongest CCK stimulation, positioning these low-molecular-weight peptides as promising bioactive components for satiety modulation and metabolic health applications. Peptidomic analysis of this fraction identified short sequences derived primarily from β-lactoglobulin (β-La) and α-lactalbumin (α-La), enriched in hydrophobic and aromatic residues, including neuropeptide-like sequences containing the Glu–Asn–Ser–Ala–Glu–Pro–Glu (ENSAEPE) motif of β-La f(108–114). In silico bioactivity profiling with MultiPep predicted antihypertensive, angiotensin-converting enzyme (ACE)–inhibitory, antidiabetic, dipeptidyl peptidase-IV (DPP-IV)–inhibitory, antioxidant, antibacterial, and neuropeptide-like activities. Overall, digestion of WPC released low-molecular-weight peptides and amino acids that enhanced CCK secretion in vitro; these findings support their potential use in nutritional strategies to enhance satiety, modulate appetite and energy intake, and improving cardiometabolic health. Full article
(This article belongs to the Special Issue Health Promoting Compounds in Milk and Dairy Products, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 1752 KB  
Article
GLP-1 Receptor Agonist Exenatide Protects Against Doxorubicin-Induced Cardiotoxicity Through the SIRT1 Pathway: An Electrocardiographic, 99mTc-PYP Scintigraphic, and Biochemical Study
by Musa Salmanoglu, Gulcin Ercan, Hanife Seyda Genç, Serdar Savaş Gül and Hatice Aygün
Medicina 2026, 62(1), 143; https://doi.org/10.3390/medicina62010143 (registering DOI) - 10 Jan 2026
Abstract
Background and Objectives: This study was designed to evaluate the potential cardioprotective effect of Exenatide against doxorubicin (DOX)-induced myocardial injury in rats by assessing scintigraphic alterations together with oxidative stress and inflammation. Materials and Methods: This study included 28 adult male Wistar albino [...] Read more.
Background and Objectives: This study was designed to evaluate the potential cardioprotective effect of Exenatide against doxorubicin (DOX)-induced myocardial injury in rats by assessing scintigraphic alterations together with oxidative stress and inflammation. Materials and Methods: This study included 28 adult male Wistar albino rats that were randomized to 4 groups (n = 7): control, Exenatide alone, DOX (receiving DOX (18 mg/kg, i.p) on days 5–7; Exenatide + DOX (treated with Exenatide together with the DOX). On day 8, ECG, 99mTc-PYP scintigraphy, and biochemical parameters were evaluated. Results: DOX caused ECG abnormalities—bradycardia, significant QT prolongation, and elevated ST-segment amplitude—along with increased myocardial PYP uptake. Exenatide + DOX group significantly improved ECG changes. Biochemically, DOX markedly increased cardiac injury biomarkers (cTnT, CK, CK-MB), hepatic and renal injury markers (ALT, AST, LDH, BUN, creatinine), SIRT-1 level, inflammatory marker (NF-κB, TNF-α, IL-6, NO) and oxidative stress indicators (MDA, TOS), while decreasing antioxidant defenses (GSH, TAS, Nrf2). Exenatide co-treatment significantly attenuated all DOX-induced changes. Conclusions: Exenatide markedly attenuates DOX-induced cardiotoxicity by improving electrical conduction, reducing myocardial radiotracer uptake, and restoring oxidative–inflammatory balance through partial recovery of the SIRT-1/Nrf2/NF-κB pathway. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

11 pages, 1877 KB  
Article
Regulatory Effects of an Antioxidant Combination on Seminal Quality and Gut Microbiota in Ningxiang Boars Under Heat Stress
by Lu Wang, Cheng Zhang, Siqi Li, Xueer Mei, Xijie Kuang, Qiye Wang and Huansheng Yang
Life 2026, 16(1), 99; https://doi.org/10.3390/life16010099 (registering DOI) - 10 Jan 2026
Abstract
Heat stress during summer significantly impairs seminal quality in swine production. As a key genetic resource for enhancing indigenous Chinese fatty pig breeds, Ningxiang boars require effective nutritional strategies to maintain reproductive performance under thermal challenge. This study aimed to investigate the effects [...] Read more.
Heat stress during summer significantly impairs seminal quality in swine production. As a key genetic resource for enhancing indigenous Chinese fatty pig breeds, Ningxiang boars require effective nutritional strategies to maintain reproductive performance under thermal challenge. This study aimed to investigate the effects of a combined antioxidant dietary supplement on seminal quality, antioxidant status, and gut microbiota in heat-stressed Ningxiang boars. Ten Ningxiang boars were randomly assigned to two groups (n = 5 per group). The control group received a basal diet, while the experimental group was fed the same basal diet supplemented with 400 mg/kg vitamin E, 5 g/kg yeast-derived zinc, 250 mg/kg yeast-derived selenium, and 800 mg/kg N-carbamylglutamate (NCG). Results demonstrated that sperm and seminal plasma superoxide dismutase (SOD) activity was significantly elevated in the supplemented group compared to the control (p < 0.05), whereas malondialdehyde (MDA) levels and total antioxidant capacity (T-AOC) did not differ significantly (p > 0.05). 16S rRNA gene sequencing revealed that dietary supplementation combined antioxidant markedly altered gut microbiota composition: the abundance of short-chain fatty acid-producing bacteria, particularly members of the Muribaculaceae family, increased significantly (p < 0.05), while opportunistic pathogens within the Acholeplasmataceae family were reduced (p < 0.05). These findings suggest that dietary supplementation with this antioxidant combination improves seminal quality in Ningxiang boars, potentially by enhancing endogenous antioxidant defenses and modulating gut microbial balance. Full article
(This article belongs to the Special Issue Perspectives on Nutrition and Livestock Health)
Show Figures

Figure 1

17 pages, 762 KB  
Article
Porcine Blood: An Eco-Efficient Source of Multifunctional Protein Hydrolysates
by Sandra Borges, Joana Odila, Glenise Voss, Rui Martins, André Almeida and Manuela Pintado
Foods 2026, 15(2), 254; https://doi.org/10.3390/foods15020254 (registering DOI) - 10 Jan 2026
Abstract
Porcine blood is a major slaughterhouse by-product and a sustainable source of high-quality proteins with potential food and nutraceutical applications. This study valorized porcine whole blood (WB, 6.7 ± 0.1% protein) and red cell fraction (CF, 50.4 ± 0.2% protein) through alcalase hydrolysis, [...] Read more.
Porcine blood is a major slaughterhouse by-product and a sustainable source of high-quality proteins with potential food and nutraceutical applications. This study valorized porcine whole blood (WB, 6.7 ± 0.1% protein) and red cell fraction (CF, 50.4 ± 0.2% protein) through alcalase hydrolysis, generating hydrolysates (WBH and CFH) with bioactive and techno-functional properties. Optimal hydrolysis conditions, defined as enzyme-to-substrate (E/S) and incubation time yielding the highest degree of hydrolysis (DH) with cost-effective enzyme usage, were 1% E/S for 4 h (WBH) and 2.5% E/S for 4 h (CFH). WBH showed a higher DH (59.5 ± 2.6%) than CFH (30.8 ± 3.3%). Antioxidant assays revealed higher ABTS activity in CFH (14.1 vs. 11.1 mg ascorbic acid equivalents/g, p < 0.05), while both exhibited similar ORAC values (166.8–180.2 mg Trolox equivalents/g, p > 0.05). After simulated gastrointestinal digestion, ABTS activity was preserved, whereas ORAC decreased (~40%). ACE inhibitory activity was also pronounced, particularly in CFH (IC50 = 59.5 µg protein/mL), but digestion converged values between hydrolysates (118–135 µg protein/mL). Techno-functional tests showed moderate emulsifying activity (~40%), with CFH displaying markedly higher oil absorption (4.79 vs. 1.31 g oil/g). Considering the limited information on porcine blood hydrolysates under gastrointestinal conditions, these findings provide new insights into their stability and support their potential as multifunctional ingredients for health-promoting foods and functional formulations. Full article
Show Figures

Figure 1

39 pages, 4559 KB  
Article
Potentiation of the Pharmacological Effects of an Aristolochia clematitis L. Extract by Loading into Liposomes Facilitating Release to HaCaT Cells
by Laura Grațiela Vicaș, Nicole Alina Marian, Diana Haj Ali, Narcis Duteanu, Paula Svera, Cristina Dehelean, Ana-Maria Vlase, Olimpia-Daniela Frenț, Ioana-Lavinia Dejeu, Rodica Anamaria Negrean, Răzvan Mihai Oros, Luminița Fritea, Andreea Smeu and Mariana Eugenia Mureșan
Pharmaceutics 2026, 18(1), 89; https://doi.org/10.3390/pharmaceutics18010089 (registering DOI) - 10 Jan 2026
Abstract
Background: Aristolochia clematitis L. (AC), a plant with diverse traditional uses, has gained increasing scientific interest due to its rich content of bioactive compounds such as flavonoids and polyphenols. However, its systemic use is limited by the presence of aristolochic acids, which [...] Read more.
Background: Aristolochia clematitis L. (AC), a plant with diverse traditional uses, has gained increasing scientific interest due to its rich content of bioactive compounds such as flavonoids and polyphenols. However, its systemic use is limited by the presence of aristolochic acids, which are known for their nephrotoxic and carcinogenic potential. Method: In this context, the present study investigates the therapeutic potential of A. clematitis extract by encapsulating it in liposomes with the aim of enhancing its topical efficacy. Results: The extract was characterized in terms of its flavonoid content (67.23 ± 0.33 mg QE/g DW (quercetin/dry plant material)) and polyphenols expressed as gallic acid equivalents (64.38 ± 0.16 mg GAE/g DW), as well as its antioxidant capacity using the reagents 1,1-diphenyl-2-picrylhydrazyl (DPPH − IC50 = 0.1619 mg/mL extract) and diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS − IC50 = 205.57 μg/mL extract). Four types of liposomes were synthesized (two loaded with extract and two empty), and their characterization was performed using Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS), Zeta Potential, polydispersity index, and in vitro release studies. Conclusions: The results demonstrated a high entrapment efficiency (over 82%), good stability over 30 days, and controlled release of flavonoids. Microbiological studies revealed relevant antimicrobial activity against Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains. The evaluation on HaCaT skin-derived cells (at 10–100 µg/mL) proved that the samples displayed good overall tolerability, slightly decreasing cell viability (the most statistically significant being associated with AC treatment) and showing no structural, nuclear, or mitochondrial morphological changes. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 2144 KB  
Article
Bacillus velezensis SQR9-Emitted Volatiles Enhance Arabidopsis Salt Tolerance via ROS Scavenging and Ion Transport Regulation
by Yucong Li, Liming Xia, Yanqiong Meng, Xinyu Shen, Xiang Wan, Fangqun Gan and Ruifu Zhang
Plants 2026, 15(2), 218; https://doi.org/10.3390/plants15020218 (registering DOI) - 10 Jan 2026
Abstract
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate [...] Read more.
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate the effects of VOCs emitted by Bacillus velezensis SQR9 on Arabidopsis thaliana seedlings under salt stress. Exposure to SQR9 VOCs significantly enhanced Arabidopsis salt tolerance, evidenced by increased biomass and root growth. Mechanistically, SQR9 VOCs mitigated salt-induced damage by increasing chlorophyll content, modulating osmolytes, and reducing malondialdehyde (MDA) levels. SQR9 VOCs alleviated oxidative stress by decreasing ROS (H2O2, O2) accumulation and enhancing antioxidant enzyme (SOD, CAT, POD) activities. Furthermore, SQR9 VOCs maintained ion homeostasis by significantly reducing leaf Na+ accumulation, maintaining a high K+/Na+ ratio, and upregulating key ion transporter genes. Analysis of the headspace from SQR9 cultured on MSgg medium identified 2,3-butanediol (2,3-BD) as a major active VOC. Exogenous application of 2,3-BD successfully mimicked the growth-promoting and salt-tolerance-enhancing effects of SQR9. Our findings demonstrate that SQR9 VOCs, particularly 2,3-BD, systemically prime Arabidopsis for salt tolerance by co-activating the antioxidant defense system and the SOS ion homeostasis pathway. Full article
Show Figures

Figure 1

24 pages, 2386 KB  
Article
Application of 1H NMR and HPLC-DAD in Metabolic Profiling of Extracts of Lavandula angustifolia and Lavandula × intermedia Cultivars
by Natalia Dobros, Katarzyna Zawada, Łukasz Woźniak and Katarzyna Paradowska
Plants 2026, 15(2), 217; https://doi.org/10.3390/plants15020217 (registering DOI) - 10 Jan 2026
Abstract
NMR spectroscopy enables the study of complex mixtures, including plant extracts. The interpretation of specific ranges of 1H NMR spectra allows for the determination of polyphenolic compound, sugar, amino acid, and fatty acid profiles. The main goal of 1H NMR analyses [...] Read more.
NMR spectroscopy enables the study of complex mixtures, including plant extracts. The interpretation of specific ranges of 1H NMR spectra allows for the determination of polyphenolic compound, sugar, amino acid, and fatty acid profiles. The main goal of 1H NMR analyses of plant extracts is to identify the unique “fingerprint” of the material being studied. The aim of this study was to determine the metabolomic profile and antioxidant activity of various Lavandula angustifolia (Betty’s Blue, Elizabeth, Hidcote, and Blue Mountain White) and Lavandula × intermedia cultivars (Alba, Grosso, and Gros Bleu) grown in Poland. Modern green chemistry extraction methods (supercritical fluid extraction (SFE) and ultrasound-assisted extraction (UAE)) were used to prepare the lipophilic and hydrophilic extracts, respectively. The secondary metabolite profiles were determined using the diagnostic signals from 1H NMR and HPLC-DAD analyses. These metabolomic profiles were used to illustrate the differences between the different lavender and lavandin cultivars. The HPLC-DAD analysis revealed that both lavender species have similar polyphenolic profiles but different levels of individual compounds. The extracts from L. angustifolia were characterized by higher phenolic acid and flavonoid contents, while the extracts from L. × intermedia had a higher coumarin content. Diagnostic 1H NMR signals can be used to verify the authenticity and origin of plant extracts, and identify directions for further research, providing a basis for applications such as in cosmetics. Full article
(This article belongs to the Special Issue Phytochemical Compounds and Antioxidant Properties of Plants)
16 pages, 3617 KB  
Article
pH-Responsive Polyethylene Oxide-Based Electrospun Nanofibers for Controlled Drug Release in Infected Wound Treatment
by Qian-Yu Yuan, Lan Yang, Bing-Chiuan Shiu, Chien-Teng Hsieh, Ching-Wen Lou and Jia-Horng Lin
Polymers 2026, 18(2), 191; https://doi.org/10.3390/polym18020191 (registering DOI) - 10 Jan 2026
Abstract
Infected wounds form a complex microenvironment that creates difficulties for drug delivery. In this study, a composite fiber membrane based on polyethylene oxide (PEO) was prepared. The intention was to achieve on-demand drug release and integrate multiple functions by adjusting the material composition. [...] Read more.
Infected wounds form a complex microenvironment that creates difficulties for drug delivery. In this study, a composite fiber membrane based on polyethylene oxide (PEO) was prepared. The intention was to achieve on-demand drug release and integrate multiple functions by adjusting the material composition. The membrane uses PEO as the main framework and contains chitosan (CS) and ascorbic acid (Asc). CS leads to an increase in fiber diameter, while Asc makes the fibers thinner. The two components act together to influence the microstructure. In vitro drug release experiments showed that changing the CS content in the PEO matrix can affect the initial release rate and the duration of sustained release. The membrane also shows sensitivity to pH. Under slightly acidic conditions, drug release becomes faster, which is similar to the state of infected wounds. In addition, the membrane maintains antioxidant activity and can inhibit Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). These results suggest that PEO-based composite fibers may be useful in drug delivery and tissue repair. Full article
(This article belongs to the Special Issue The Development of Modified Polymer Materials in Sensing)
22 pages, 14558 KB  
Article
Ginsenoside Re Ameliorates UVB-Induced Skin Photodamage by Modulating the Glutathione Metabolism Pathway: Insights from Integrated Transcriptomic and Metabolomic Analyses
by Jiaqi Wang, Duoduo Xu, Yangbin Lai, Yuan Zhao, Qiao Jin, Yuxin Yin, Jinqi Wang, Yang Wang, Shuying Liu and Enpeng Wang
Int. J. Mol. Sci. 2026, 27(2), 708; https://doi.org/10.3390/ijms27020708 (registering DOI) - 10 Jan 2026
Abstract
With the growing prominence of skin photodamage caused by ultraviolet (UV) radiation, the development of efficient and safe natural photoprotectants has become a major research focus. Ginsenoside Re (G-Re), a primary active component of ginseng (Panax ginseng C. A. Mey.), has attracted [...] Read more.
With the growing prominence of skin photodamage caused by ultraviolet (UV) radiation, the development of efficient and safe natural photoprotectants has become a major research focus. Ginsenoside Re (G-Re), a primary active component of ginseng (Panax ginseng C. A. Mey.), has attracted much attention due to its significant antioxidant and anti-inflammatory activities; however, its systemic role and mechanism in protecting against photodamage remain unclear. In this study, a UVB-induced rat photodamage model was established to evaluate the protective effect of ginsenoside Re through histopathological staining, biochemical assay, and immunohistochemical analysis. Furthermore, an integrated transcriptomic and metabolomic approach was applied to elucidate the molecular mechanism of G-Re protection and to establish the association between the photodamage phenotype, metabolic pathways, and gene functions. Following their identification via integrated multi-omics analysis, the key targets were subjected to verification via Western blotting. The results showed that G-Re could effectively alleviate UVB-induced pathological injury and reduce the level of oxidative stress and inflammatory factors, which could reverse regulate the abnormal expression of 265 differential genes and 30 metabolites. The glutathione metabolism pathway was proven as a key pathway mediating the protective effects of ginsenoside Re against skin photodamage via integrated analysis, WB verification, and molecular docking. The current study indicated that G-Re could be a promising natural sunscreen additive in cosmetical products. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

26 pages, 27909 KB  
Article
Vine Tea (Ampelopsis grossedentata) Extract Mitigates High-Salt-Diet-Induced Hypertension by Remodeling the Gut Microbiota–Metabolite Axis in Mice
by Yuxuan Gu, Qiling Li, Lu Cao and Huabing Yang
Int. J. Mol. Sci. 2026, 27(2), 709; https://doi.org/10.3390/ijms27020709 (registering DOI) - 10 Jan 2026
Abstract
Hypertension is a major global health challenge, with excessive dietary salt intake recognized as a key environmental factor contributing to its pathogenesis. However, safe and effective dietary interventions for salt-sensitive hypertension remain limited. Vine tea (Ampelopsis grossedentata), a traditional herbal tea [...] Read more.
Hypertension is a major global health challenge, with excessive dietary salt intake recognized as a key environmental factor contributing to its pathogenesis. However, safe and effective dietary interventions for salt-sensitive hypertension remain limited. Vine tea (Ampelopsis grossedentata), a traditional herbal tea widely consumed for centuries in southern China, has been reported to exhibit antioxidant, anti-inflammatory, and hepatoprotective activities, yet its antihypertensive efficacy and underlying mechanisms remain unclear. In this study, the chemical profile of vine tea aqueous extract (VTE) was characterized by UPLC–Q–TOF–MS, identifying dihydromyricetin, isoquercitrin, and myricetin as the predominant flavonoids. The protective effects of VTE were evaluated in C57BL/6J mice with high-salt-diet (HSD)-induced hypertension. VTE treatment significantly lowered systolic blood pressure and ameliorated cardiac and renal injury, accompanied by reduced inflammation, fibrosis, and cardiac stress-related gene expression. Gut microbiota analysis using 16S rRNA gene sequencing revealed that VTE restored microbial richness and diversity, enriching short-chain fatty acid-producing taxa while suppressing pathogenic Desulfovibrio and Ruminococcus torques. Untargeted plasma metabolomic profiling based on UPLC–Q–TOF–MS further showed that VTE normalized tryptophan, bile acid, and glycerophospholipid metabolism, decreasing the uremic toxin indoxyl sulfate while increasing tauroursodeoxycholic acid. Notably, these protective effects were abolished under antibiotic-induced microbiota depletion, confirming that VTE acts through a gut microbiota-dependent mechanism. Collectively, VTE mitigates salt-induced hypertension and cardiorenal injury by remodeling the gut microbiota–metabolite axis, supporting its potential as a natural dietary intervention for managing hypertension. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Molecular Insights into the Synergistic Anticancer and Oxidative Stress–Modulating Activity of Quercetin and Gemcitabine
by Yasemin Afşin, Senem Alkan Akalın, İlhan Özdemir, Mehmet Cudi Tuncer and Şamil Öztürk
Antioxidants 2026, 15(1), 91; https://doi.org/10.3390/antiox15010091 (registering DOI) - 10 Jan 2026
Abstract
Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as [...] Read more.
Quercetin (Q), a bioactive flavonoid, exerts potent antioxidant and redox-modulating effects by activating the nuclear factor erythroid 2-related factor 2/antioxidant response Element (Nrf2/ARE) pathway and upregulating endogenous antioxidant defenses, including enzymatic antioxidants such as superoxide dismutase (SOD) and catalase (CAT), as well as non-enzymatic glutathione (GSH) and lipid peroxidation (MDA). Gemcitabine (Gem), a widely used antimetabolite chemotherapeutic, often shows limited efficacy under hypoxic and oxidative stress conditions driven by hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF)-mediated angiogenesis. This study investigated the redox-mediated synergistic effects of Q and Gem in MDA-MB-231 human breast cancer cells. Combination treatment significantly reduced cell viability beyond the expected Bliss value, indicating a synergistic interaction and enhanced apoptosis compared with single-agent treatments. Increased reactive oxygen species (ROS) production was accompanied by depletion of GSH and accumulation of MDA, establishing a pro-apoptotic oxidative stress environment. Q alone enhanced SOD and CAT activities, whereas the combination induced exhaustion of antioxidant defenses under oxidative load, reflecting a redox-adaptive response. Molecular analyses revealed downregulation of HIF-1α and VEGF, alongside upregulation of Bax and Caspase-3, confirming suppression of hypoxia-driven survival and activation of the intrinsic apoptotic pathway. Transcriptomic and enrichment analyses further identified modulation of oxidative stress- and apoptosis-related pathways, including phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt), HIF-1 and VEGF signaling. Collectively, these results indicate that Q potentiates Gem cytotoxicity via redox modulation, promoting controlled ROS elevation and apoptosis while suppressing hypoxia-induced survival mechanisms, highlighting the therapeutic potential of redox-based combination strategies against chemoresistant breast cancer. Full article
(This article belongs to the Special Issue Redox Biomarkers in Cancer)
Show Figures

Figure 1

15 pages, 1720 KB  
Article
Differential Oxidative Stress Profiles in Circulating and Peritumoral Adipose Tissue Across Stages of Colorectal Cancer
by Somchai Ruangwannasak, Sittichai Khamsai, Poungrat Pakdeechote, Putcharawipa Maneesai, Parichat Prachaney, Wilaiwan Mothong and Chalerm Eurboonyanun
Int. J. Mol. Sci. 2026, 27(2), 707; https://doi.org/10.3390/ijms27020707 (registering DOI) - 10 Jan 2026
Abstract
This study intends to assess oxidative stress markers and endogenous enzymes in plasma and peritumoral adipose tissues (PATs) obtained from normal subjects and patients with stages I-IV colorectal cancer (CRC). 63 participants were recruited, including 23 patients with colorectal cancer and 40 healthy [...] Read more.
This study intends to assess oxidative stress markers and endogenous enzymes in plasma and peritumoral adipose tissues (PATs) obtained from normal subjects and patients with stages I-IV colorectal cancer (CRC). 63 participants were recruited, including 23 patients with colorectal cancer and 40 healthy subjects. CRC patients had increased circulating malondialdehyde (MDA) and protein carbonyl concentrations, as well as reduced superoxide dismutase (SOD) and catalase activities, compared to normal volunteers. (p < 0.05). The findings aligned with the oxidative parameters assessed in peritumoral adipose tissue. Superoxide production in PAT was dramatically higher in the CRC group compared to the control group (p < 0.05). Moreover, oxidative stress markers were progressively altered in relation to CRC stages. Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) protein expression was reduced in PAT isolated from CRC compared to normal subjects and associated with CRC stages. CRC patients showed a systemic and peritumoral oxidative imbalance, along with elevated superoxide production in the PAT. The oxidative modifications worsened with the progression of CRC stage and were associated with the downregulation of the Nrf2/HO-1 antioxidant cascade in peritumoral adipose tissue. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 42623 KB  
Article
The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall
by Ludan Hou, Tonglou Li, Baosheng Zhang, Zehua Zhang, Bing Deng, Lijing Xu, Xueran Geng, Yanfen Cheng, Mingchang Chang and Junlong Meng
J. Fungi 2026, 12(1), 48; https://doi.org/10.3390/jof12010048 (registering DOI) - 10 Jan 2026
Abstract
In recent years, the response mechanism of Pleurotus ostreatus to abiotic stress has received widespread attention. MnSOD is an important antioxidant enzyme that has been widely studied in animals and plants because of its functions. However, there is little research on the function [...] Read more.
In recent years, the response mechanism of Pleurotus ostreatus to abiotic stress has received widespread attention. MnSOD is an important antioxidant enzyme that has been widely studied in animals and plants because of its functions. However, there is little research on the function and regulatory mechanism of MnSOD in the growth and development of edible fungi. This study investigated the role of Mnsod3 in the growth and development of P. ostreatus. The results showed that during the nutritional growth stage, heat stress can cause the cell wall of mycelia to shrink and the cells to exhibit cytoplasmic wall separation. RNA-seq revealed that Mnsod3 interference is strongly correlated with increased transcript levels of cell wall synthase genes and with increased tolerance to cell wall disruptors. During the primordium formation stage, the mycelial cell wall also significantly wrinkled under cold and light stresses. RNAi of Mnsod3 alleviated the cell wall wrinkling caused by cold and light stress, restored the smoothness of the cell walls, and increased mycelial tolerance to abiotic stress. This may be related to the slower formation rate of primordia, but the specific molecular mechanism still needs further research. and slowed the rate of primordium formation. In summary, Mnsod3 plays an important role in the growth and development of P. ostreatus under abiotic stress and plays a critical regulatory role in cell wall remodeling under abiotic stress. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

Back to TopTop