Porcine Blood: An Eco-Efficient Source of Multifunctional Protein Hydrolysates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Hydrolysis of Porcine Blood
2.2.1. Determination of Degree of Hydrolysis
2.2.2. Molecular Weight Distribution Analysis
2.3. Characterization of Scaled-Up Porcine Blood Hydrolysates
Determination of Total Protein and Free Amino Acid Content
2.4. Bioactive Properties of Porcine Blood Hydrolysates
2.4.1. Analysis of Antioxidant Activity
2,2-Azino-bis-3-Ethylbenzothiazoline-6-sulphonic Acid (ABTS) Scavenging Assay
Oxygen Radical Absorbance Capacity (ORAC) Assay
2.4.2. Measurement of Angiotensin-Converting Enzyme (ACE) Inhibitory Effect
2.5. Simulation of Gastrointestinal Tract Conditions
2.6. Techno-Functional Properties
2.6.1. Emulsifying Property and Stability
2.6.2. Oil Absorption Capacity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Enzymatic Hydrolysis of Porcine Blood
3.2. Characterization of Scaled-Up Porcine Blood Hydrolysates
3.2.1. Degree of Hydrolysis, Total Protein and Free Amino Acid Content
3.2.2. Bioactive Properties of Porcine Blood Hydrolysates
Antioxidant Capacity and Impact of Simulated Gastrointestinal Digestion
ACE Inhibitory Potential and Impact of Simulated Gastrointestinal Digestion
3.2.3. Techno-Functional Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAE | Ascorbic acid equivalents |
| AAPH | 2,2′-Azobis(2-amidinopropane) dihydrochloride |
| ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
| ACE | Angiotensin-converting enzyme |
| ANOVA | Analysis of variance |
| AUC | Area under the curve |
| BCAAs | Branched-chain amino acids |
| CF | Red cell fraction |
| CFH | Red cell fraction hydrolysate |
| DH | Degree of hydrolysis |
| E/S | Enzyme-to-substrate ratio |
| FPLC | Fast protein liquid chromatography |
| GIT | Gastrointestinal tract |
| HPLC | High-performance liquid chromatography |
| IC50 | Concentration required to inhibit 50% of enzymatic activity |
| LSD | Least significant difference |
| MW | Molecular weight |
| n.d. | Not detected |
| OPA | Orthophthalaldehyde |
| ORAC | Oxygen radical absorbance capacity |
| ROS | Reactive oxygen species |
| RP-HPLC | Reverse-phase high-performance liquid chromatography |
| SPSS | Statistical Package for the Social Sciences |
| TE | Trolox equivalents |
| TNBS | 2,4,6-Trinitrobenzenesulfonic acid |
| WB | Whole blood |
| WBH | Whole blood hydrolysate |
References
- Al-Zohairi, S.; Knudsen, M.T.; Mogensen, L. Utilizing animal by-products in European slaughterhouses to reduce the environmental footprint of pork products. Sustain. Prod. Consum. 2023, 37, 306–319. [Google Scholar] [CrossRef]
- Jin, S.W.; Lee, G.H.; Kim, J.Y.; Kim, C.Y.; Choo, Y.M.; Cho, W.; Choi, J.H.; Han, E.H.; Hwang, Y.P.; Jeong, H.G. Effects of Porcine Whole-Blood Protein Hydrolysate on Exercise Function and Skeletal Muscle Differentiation. Appl. Sci. 2021, 12, 17. [Google Scholar] [CrossRef]
- Marques, B.; Nunes, R.; Araújo-Rodrigues, H.; Pintado, M.; Pereira, R.N.; Teixeira, J.A.; Rocha, C.M.R. Solubilization and Hydrolysis of Porcine Coagulated Blood Protein Using Sub-Critical Solvent Extraction. Food Bioproc. Technol. 2024, 17, 123–137. [Google Scholar] [CrossRef]
- Bułkowska, K.; Zielińska, M. Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review. Energies 2024, 17, 5873. [Google Scholar] [CrossRef]
- Bak, K.H.; Waehrens, S.S.; Fu, Y.; Chow, C.Y.; Petersen, M.A.; Ruiz-Carrascal, J.; Bredie, W.L.P.; Lametsch, R. Flavor Characterization of Animal Hydrolysates and Potential of Glucosamine in Flavor Modulation. Foods 2021, 10, 3008. [Google Scholar] [CrossRef]
- Zou, Y.; Lu, F.; Yang, B.; Ma, J.; Yang, J.; Li, C.; Wang, X.; Wang, D.; Xu, W. Effect of ultrasound assisted konjac glucomannan treatment on properties of chicken plasma protein gelation. Ultrason. Sonochem. 2021, 80, 105821. [Google Scholar] [CrossRef]
- Ofori, J.A.; Hsieh, Y.H.P. Issues Related to the Use of Blood in Food and Animal Feed. Crit. Rev. Food Sci. Nutr. 2014, 54, 687–697. [Google Scholar] [CrossRef]
- Gupta, A.K.; Fadzlillah, N.A.; Sukri, S.J.M.; Adediran, O.A.; Rather, M.A.; Naik, B.; Kumar, V.; Bekhit, A.E.-D.A.; Ramli, M.A.; Jha, A.K.; et al. Slaughterhouse blood: A state-of-the-art review on transforming by-products into valuable nutritional resources and the role of circular economy. Food Biosci. 2024, 61, 104644. [Google Scholar] [CrossRef]
- Kaprasob, R.; Khongdetch, J.; Laohakunjit, N.; Selamassakul, O.; Kaisangsri, N. Isolation and characterization, antioxidant, and antihypertensive activity of novel bioactive peptides derived from hydrolysis of King Boletus mushroom. LWT 2022, 160, 113287. [Google Scholar] [CrossRef]
- Borges, S.; Piccirillo, C.; Scalera, F.; Martins, R.; Rosa, A.; Couto, J.A.; Almeida, A.; Pintado, M. Valorization of porcine by-products: A combined process for protein hydrolysates and hydroxyapatite production. Bioresour. Bioprocess. 2022, 9, 30. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension. J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Xin, X.; Huang, Y.; Zhang, M.; Zou, Y.; Zeng, L.; Fei, Y.; Bai, W.; Yang, S. Efficient hydrolysis of coagulated porcine blood by a purified lumbrokinase from Eisenia fetida. Food Biosci. 2025, 68, 106655. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Coscueta, E.R.; Pereira, M.F.; Cunha, S.A.; Almeida, A.; Rosa, A.; Martins, R.; Pereira, C.D.; Pintado, M.E. Membrane fractionation of Cynara cardunculus swine blood hydrolysate: Ingredients of high nutritional and nutraceutical value. Food Res. Int. 2022, 158, 111549. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.; Bances, M.; Rendueles, M.; Díaz, M. Functional properties of isolated porcine blood proteins. Int. J. Food Sci. Technol. 2009, 44, 807–814. [Google Scholar] [CrossRef]
- Moura Nadolny, J.; Flanagan, B.M.; Shewan, H.M.; Smyth, H.E.; Best, O.; Stokes, J.R. Nutritional, functional and rheological properties of bunya nut flour as a versatile gluten-free option. Food Res. Int. 2025, 202, 115627. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pino, F. Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices. Food Chem. 2023, 406, 135046. [Google Scholar] [CrossRef]
- Moreno-Mariscal, C.; Moroni, F.; Pérez-Sánchez, J.; Mora, L.; Toldrá, F. Optimization of Sequential Enzymatic Hydrolysis in Porcine Blood and the Influence on Peptide Profile and Bioactivity of Prepared Hydrolysates. Int. J. Mol. Sci. 2025, 26, 3583. [Google Scholar] [CrossRef]
- Borges, S.; Odila, J.; Voss, G.; Martins, R.; Rosa, A.; Couto, J.A.; Almeida, A.; Pintado, M. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules 2023, 28, 1155. [Google Scholar] [CrossRef]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef]
- Proestos, C.; Loukatos, P.; Komaitis, M. Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem. 2008, 106, 1218–1224. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Amorim, M.; Pinheiro, H.; Pintado, M. Valorization of spent brewer’s yeast: Optimization of hydrolysis process towards the generation of stable ACE-inhibitory peptides. LWT 2019, 111, 77–84. [Google Scholar] [CrossRef]
- Chaparro Acuña, S.P.; Gil González, J.H.; Aristizábal Torres, I.D. Physicochemical characteristics and functional properties of vitabosa (mucuna deeringiana) and soybean (glycine max). Food Sci. Technol. 2012, 32, 98–105. [Google Scholar] [CrossRef]
- Spellman, D.; McEvoy, E.; O’Cuinn, G.; FitzGerald, R.J. Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. Int. Dairy J. 2003, 13, 447–453. [Google Scholar] [CrossRef]
- Bassan, J.C.; Goulart, A.J.; Nasser, A.L.M.; Bezerra, T.M.S.; Garrido, S.S.; Rustiguel, C.B.; Guimarães, L.H.S.; Monti, R. Buffalo Cheese Whey Proteins, Identification of a 24 kDa Protein and Characterization of Their Hydrolysates: In Vitro Gastrointestinal Digestion. PLoS ONE 2015, 10, e0139550. [Google Scholar] [CrossRef] [PubMed]
- Rocha Camargo, T.; Ramos, P.; Monserrat, J.M.; Prentice, C.; Fernandes, C.J.C.; Zambuzzi, W.F.; Valenti, W.C. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Food Chem. 2021, 342, 128361. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.J.; Zhao, Y.; Wang, X.Y.; Chi, Y.J. Effects of degree of hydrolysis (DH) on the functional properties of egg yolk hydrolysate with alcalase. J. Food Sci. Technol. 2017, 54, 669–678. [Google Scholar] [CrossRef]
- Guérard, F.; Dufossé, L.; De La Broise, D.; Binet, A. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B Enzym. 2001, 11, 1051–1059. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, F.; Yuan, X.; Ji, Y.; Li, H.; Li, H.; Yu, J.; Zulewska, J. Enzymatic hydrolysis of whey proteins by the combination of Alcalase and Neutrase: Kinetic model and hydrolysis control. Int. Dairy J. 2024, 151, 105867. [Google Scholar] [CrossRef]
- Schroeder, H.W.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed]
- Pendu, R.; Cristophe, O.D.; Denis, C.V. Mouse models of von Willebrand disease. J. Thromb. Haemost. 2009, 7, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gálvez, R.; Almécija, M.C.; Espejo, F.J.; Guadix, E.M.; Guadix, A. Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein. Biochem. Eng. J. 2011, 53, 305–310. [Google Scholar] [CrossRef]
- da Silva Bambirra Alves, F.E.; Teixeira, G.L.; Ávila, S.; Ribani, R.H.; Scheer Ade, P. Functional and antioxidant properties of a chicken blood meal hydrolysate. In As Ciências Agrárias e Seus Impactos na Sociedade—Volume 04; Brazilian Journals Editora: São José dos Pinhais, Brazil, 2020; pp. 115–128. [Google Scholar]
- Matsuda, M.; Sugo, T. Structure and function of human fibrinogen inferred from dysfibrinogens. Int. J. Hematol. 2002, 76, 352–360. [Google Scholar] [CrossRef]
- Barshtein, G.; Livshits, L.; Gural, A.; Arbell, D.; Barkan, R.; Pajic-Lijakovic, I.; Yedgar, S. Hemoglobin Binding to the Red Blood Cell (RBC) Membrane Is Associated with Decreased Cell Deformability. Int. J. Mol. Sci. 2024, 25, 5814. [Google Scholar] [CrossRef]
- Gisbert, E.; Ibarz, A.; Firmino, J.P.; Fernández-Alacid, L.; Salomón, R.; Vallejos-Vidal, E.; Ruiz, A.; Polo, J.; Sanahuja, I.; Reyes-López, F.E.; et al. Porcine Protein Hydrolysates (PEPTEIVA®) Promote Growth and Enhance Systemic Immunity in Gilthead Sea Bream (Sparus aurata). Animals 2021, 11, 2122. [Google Scholar] [CrossRef]
- Garattini, S. Glutamic Acid, Twenty Years Later. J. Nutr. 2000, 130, 901S–909S. [Google Scholar] [CrossRef]
- Holeček, M. Aspartic Acid in Health and Disease. Nutrients 2023, 15, 4023. [Google Scholar] [CrossRef]
- Holeček, M. Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 7037. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research progress in the role and mechanism of Leucine in regulating animal growth and development. Front Physiol. 2023, 14, 1252089. [Google Scholar]
- Abou-Diab, M.; Thibodeau, J.; Deracinois, B.; Flahaut, C.; Fliss, I.; Dhulster, P.; Bazinet, L.; Nedjar, N. Bovine Hemoglobin Enzymatic Hydrolysis by a New Eco-Efficient Process-Part II: Production of Bioactive Peptides. Membranes 2020, 10, 268. [Google Scholar] [CrossRef]
- Hamzeh, A.; Wongngam, W.; Kiatsongchai, R.; Yongsawatdigul, J. Cellular and chemical antioxidant activities of chicken blood hydrolysates as affected by in vitro gastrointestinal digestion. Poult. Sci. 2019, 98, 6138–6148. [Google Scholar] [CrossRef]
- Mardani, M.; Badakné, K.; Farmani, J.; Aluko, R.E. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr. Rev. Food Sci. Food Saf. 2023, 22, 46–106. [Google Scholar] [CrossRef]
- Bah, C.S.F.; Bekhit, A.E.D.A.; Carne, A.; McConnell, M.A. Production of bioactive peptide hydrolysates from deer, sheep and pig plasma using plant and fungal protease preparations. Food Chem. 2015, 176, 54–63. [Google Scholar] [CrossRef]
- Boonkong, S.; Luasiri, P.; Pongsetkul, J.; Suwanandgul, S.; Chaipayang, S.; Molee, W.; Sangsawad, P. Exploring the Utilization of Bovine Blood as a Source of Antioxidant Peptide: Production, Concentration, Identification, and In Silico Gastrointestinal Digestion. Food Sci. Anim. Resour. 2024, 44, 1283–1304. [Google Scholar] [CrossRef]
- Lucas-Abellán, C.; Mercader-Ros, M.T.; Zafrilla, M.P.; Gabaldón, J.A.; Núñez-Delicado, E. Comparative study of different methods to measure antioxidant activity of resveratrol in the presence of cyclodextrins. Food Chem. Toxicol. 2011, 49, 1255–1260. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Abioye, R.O.; Okagu, I.U.; Obeme-Nmom, J.I. Bioaccessibility of bioactive peptides: Recent advances and perspectives. Curr. Opin. Food Sci. 2021, 39, 182–189. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. J. Agric. Food Res. 2022, 9, 100353. [Google Scholar] [CrossRef]
- Yao, X.; Cao, X.; Chen, L.; Liao, W. Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin–Angiotensin System. Nutrients 2024, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Chiang, B. Bioactive peptide production by hydrolysis of porcine blood proteins in a continuous enzymatic membrane reactor. J. Sci. Food Agric. 2009, 89, 372–378. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, J.; Miyaguchi, Y.; Bai, X.; Du, Y.; Lin, B. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides 2006, 27, 2950–2956. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zhang, J.; Sun, B.; Zhang, M.; Zhang, Y.; Li, K.; Zhang, Y. ACE inhibitory activity and gastrointestinal digestion stability of umami peptides IIVFGRQLL from yeast extract. LWT 2024, 203, 116308. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Castañeda-Valbuena, D.; Tavano, O.; Murcia, Á.B.; Torrestina-Sánchez, B.; Fernandez-Lafuente, R. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review. Int. J. Biol. Macromol. 2023, 253, 127244. [Google Scholar] [CrossRef]
- Dinakarkumar, Y.; Krishnamoorthy, S.; Margavelu, G.; Ramakrishnan, G.; Chandran, M. Production and characterization of fish protein hydrolysate: Effective utilization of trawl by-catch. Food Chem. Adv. 2022, 1, 100138. [Google Scholar] [CrossRef]
- dos Santos, S.D.; Martins, V.G.; Salas-Mellado, M.; Prentice, C. Evaluation of Functional Properties in Protein Hydrolysates from Bluewing Searobin (Prionotus punctatus) Obtained with Different Microbial Enzymes. Food Bioproc. Technol. 2011, 4, 1399–1406. [Google Scholar]


| mg/g Protein | WBH | CFH |
|---|---|---|
| Aspartic acid | 0.80 ± 0.05 | 7.73 ± 0.32 |
| Glutamic acid | 1.91 ± 0.06 | 9.02 ± 0.24 |
| Cysteine | 0.07 ± 0.00 | 0.06 ± 0.01 |
| Asparagine | 0.06 ± 0.00 | n.d. |
| Serine | 0.80 ± 0.05 | 1.07 ± 0.01 |
| Histidine | 1.38 ± 0.06 | n.d. |
| Glutamine | 0.48 ± 0.05 | 0.17 ± 0.05 |
| Threonine | 1.19 ± 0.06 | 1.12 ± 0.00 |
| Arginine | 0.68 ± 0.02 | 1.30 ± 0.00 |
| Alanine | 2.78 ± 0.06 | 8.82 ± 0.15 |
| Tyrosine | 1.91 ± 0.06 | 1.07 ± 0.03 |
| Valine | 3.02 ± 0.20 | 6.06 ± 0.06 |
| Methionine | 1.28 ± 0.10 | 0.66 ± 0.02 |
| Tryptophan | 0.87 ± 0.01 | 0.69 ± 0.01 |
| Phenylalanine | 0.55 ± 0.00 | 1.43 ± 0.04 |
| Isoleucine | 3.53 ± 0.10 | 0.62 ± 0.02 |
| Leucine | 8.94 ± 0.20 | 5.37 ± 0.05 |
| Total | 30.24 | 45.20 |
| Bioactive Property | Condition | WBH | CFH |
|---|---|---|---|
| Antioxidant capacity | |||
| ABTS (mg AAE/g) | Before GIT | 11.1 ± 0.2 a | 14.1 ± 0.1 b |
| After GIT | 11.5 ± 0.7 a | 13.9 ± 0.2 b | |
| ORAC (mg TE/g) | Before GIT | 180.2 ± 4.9 d | 166.8 ± 15.5 d |
| After GIT | 107.3 ± 12.8 e | 102.0 ± 23.0 e | |
| ACE inhibitory potential | |||
| IC50 (µg of protein/mL) | Before GIT | 153.2 ± 10.7 f | 59.5 ± 3.2 g |
| After GIT | 135.1 ± 13.2 f | 118.3 ± 12.2 f |
| Techno-Functional Property | WBH | CFH |
|---|---|---|
| Emulsifying property (%) | 44.3 ± 1.0 a | 42.1 ± 0.1 a |
| Emulsifying stability (%) | 44.0 ± 0.4 a | 43.6 ± 0.5 a |
| Oil absorption capacity (g oil/g dry extract) | 1.31 ± 0.07 b | 4.79 ± 0.15 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Borges, S.; Odila, J.; Voss, G.; Martins, R.; Almeida, A.; Pintado, M. Porcine Blood: An Eco-Efficient Source of Multifunctional Protein Hydrolysates. Foods 2026, 15, 254. https://doi.org/10.3390/foods15020254
Borges S, Odila J, Voss G, Martins R, Almeida A, Pintado M. Porcine Blood: An Eco-Efficient Source of Multifunctional Protein Hydrolysates. Foods. 2026; 15(2):254. https://doi.org/10.3390/foods15020254
Chicago/Turabian StyleBorges, Sandra, Joana Odila, Glenise Voss, Rui Martins, André Almeida, and Manuela Pintado. 2026. "Porcine Blood: An Eco-Efficient Source of Multifunctional Protein Hydrolysates" Foods 15, no. 2: 254. https://doi.org/10.3390/foods15020254
APA StyleBorges, S., Odila, J., Voss, G., Martins, R., Almeida, A., & Pintado, M. (2026). Porcine Blood: An Eco-Efficient Source of Multifunctional Protein Hydrolysates. Foods, 15(2), 254. https://doi.org/10.3390/foods15020254

