The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Bioinformatics Analysis of the Mnsod3 Gene
2.3. Expression and Purification of the MnSOD3 Protein
2.4. Construction of the OE-Mnsod3 and RNAi-Mnsod3 Plasmids and Strains
2.5. Heat Stress Treatment
2.6. Determination of ROS and Cell Membrane Integrity in Mycelia
2.7. Determination of the Growth Rate
2.8. RNA-Seq of Different Strains Under Heat Stress
2.9. H2O2 Tolerance Determination
2.10. Fruiting Body Production Experiments with Different Strains
2.11. Subcellular Localization of MnSOD3
2.12. Experiments Involving the Addition of Exogenous Cell Wall Antagonists
2.13. Experiment with the Addition of Exogenous Diethyldithiocarbamate (DDC)
2.14. Microscopic Analysis of Mycelia
2.15. Quantitative Real-Time PCR (qPCR)
3. Results
3.1. Heat Stress Treatment Causes Membrane Damage and Cell Wall Wrinkling in the Mycelia of P. ostreatus
3.2. Bioinformatics Analysis of Mnsod3
3.3. The Interference of Mnsod3 Increased the Tolerance of Mycelia to H2O2 and Increased Their Growth Rate Under Heat Stress
3.4. RNA-Seq Reveals That Mnsod3 Interference Can Regulate Cell Wall-Related Metabolic Pathways
3.5. Interference with Mnsod3 Promotes Cell Wall Synthesis by Positively Regulating the Expression of CHS- and GSC-Encoding Genes
3.6. RNAi of Mnsod3 Slows the Rate of Primordium Formation by Alleviating Cell Wall Wrinkling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krakowska, A.; Zięba, P.; Włodarczyk, A.; Kała, K.; Sułkowska-Ziaja, K.; Bernaś, E.; Sękara, A.; Ostachowicz, B.; Muszyńska, B. Selected edible medicinal mushrooms from Pleurotus genus as an answer for human civilization diseases. Food Chem. 2020, 327, 127084. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.C.; Liu, X.P.; Cui, L.L.; Ma, C.Y. Extraction and bioactivities of the chemical composition from Pleurotus ostreatus: A review. J. Future Foods 2024, 4, 111–118. [Google Scholar] [CrossRef]
- Qiu, Z.H.; Wu, X.L.; Zhang, J.X.; Huang, C.Y. High-temperature induced changes of extracellular metabolites in Pleurotus ostreatus and their positive effects on the growth of Trichoderma asperellum. Front. Microbiol. 2018, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Hu, D.D.; Zhang, Y.Y.; Goodwin, P.H.; Huang, C.Y.; Chen, Q.; Gao, W.; Wu, X.L.; Zou, Y.J.; Qu, J.B.; et al. Anoxia and anaerobic respiration are involved in “spawn-burning” syndrome for edible mushroom Pleurotus eryngii grown at high temperatures. Sci. Hortic. 2016, 199, 75–80. [Google Scholar] [CrossRef]
- Yan, Z.Y.; Zhao, M.R.; Wu, X.L.; Zhang, J.X. Metabolic response of Pleurotus ostreatus to continuous heat stress. Front. Microbiol. 2020, 10, 3148. [Google Scholar] [CrossRef]
- Hou, L.D.; Zhao, M.R.; Huang, C.Y.; He, Q.; Zhang, L.J.; Zhang, J.X. Alternative oxidase gene induced by nitric oxide is involved in the regulation of ROS and enhances the resistance of Pleurotus ostreatus to heat stress. Microb. Cell Fact. 2021, 20, 137. [Google Scholar] [CrossRef]
- Wang, L.N.; Wu, X.L.; Gao, W.; Zhao, M.R.; Zhang, J.X.; Huang, C.Y. Differential expression patterns of Pleurotus ostreatus catalase genes during developmental stages and under heat stress. Genes 2017, 8, 335. [Google Scholar] [CrossRef]
- Pei, J.Q.; Zhao, M.R.; Zhang, L.J.; Wu, X.L. The metacaspase gene PoMCA1 enhances the mycelial heat stress tolerance and regulates the fruiting body development of Pleurotus ostreatus. Horticulturae 2024, 10, 116. [Google Scholar] [CrossRef]
- Hou, L.D.; Huang, C.Y.; Wu, X.L.; Zhang, J.X.; Zhao, M.R. Nitric oxide negatively regulates the rapid formation of Pleurotus ostreatus primordia by inhibiting the mitochondrial aco gene. J. Fungi 2022, 8, 1055. [Google Scholar] [CrossRef]
- Zhang, G.; Yan, P.; Leng, D.D.; Shang, L.; Zhang, C.H.; Wu, Z.W.; Wang, Z.H. Salicylic acid treatment alleviates the heat stress response by reducing the intracellular Ros level and increasing the cytosolic trehalose content in Pleurotus ostreatus. Microbiol. Spectr. 2023, 11, e0311322. [Google Scholar] [CrossRef]
- Hou, L.D.; Liu, Z.Q.; Yan, K.X.; Xu, L.J.; Chang, M.C.; Meng, J.L. Mnsod1 promotes the development of Pleurotus ostreatus and enhances the tolerance of mycelia to heat stress. Microb. Cell Factories 2022, 21, 155. [Google Scholar] [CrossRef]
- Yan, K.X.; Guo, L.F.; Zhang, B.F.; Chang, M.C.; Meng, J.L.; Deng, B.; Liu, J.Y.; Hou, L.D. MAC family transcription factors enhance the tolerance of mycelia to heat stress and promote the primordial formation rate of Pleurotus ostreatus. J. Fungi. 2024, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Blackman, L.M.; Mitchell, H.J.; Hardham, A.R. Characterisation of manganese superoxide dismutase from Phytophthora nicotianae. Mycol. Res. 2005, 109, 1171–1183. [Google Scholar] [CrossRef]
- Machihara, K.; Oki, S.; Maejima, Y.; Kageyama, S.; Onda, A.; Koseki, Y.; Imai, Y.; Namba, T. Restoration of mitochondrial function by Spirulina polysaccharide via upregulated SOD2 in aging fibroblasts. iScience 2023, 26, 107113. [Google Scholar] [CrossRef] [PubMed]
- Shota, T.; Daisuke, S.; Nojiri, H.; Yoshihiko, N.; Takayuki, W.; Erika, M.; Jordy, S.; Hazuki, S.; Shota, O.; Daiki, M.; et al. SOD2 orchestrates redox homeostasis in intervertebral discs: A novel insight into oxidative stress-mediated degeneration and therapeutic potential. Redox Biol. 2024, 71, 103091. [Google Scholar] [CrossRef]
- Xi, D.M.; Liu, W.S.; Yang, G.D.; Wu, C.A.; Zheng, C.C. Seed-specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth. Plant Biotechnol. J. 2010, 8, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.H.; Jinn, T.L. Impacts of Mn, Fe, and oxidative stressors on MnSOD activation by AtMTM1 and AtMTM2 in Arabidopsis. Plants 2022, 11, 619. [Google Scholar] [CrossRef]
- Takahashi, H.; Suzuki, T.; Shirai, A.; Matsuyama, A.; Dohmae, N.; Yoshida, M. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth. Biochem. Biochem. Biophys. Res. Commun. 2011, 406, 42–46. [Google Scholar] [CrossRef]
- Pákozdi, K.; Emri, T.; Antal, K.; Pócsi, I. Global transcriptomic changes elicited by sodB deletion and menadione exposure in Aspergillus nidulans. J. Fungi 2023, 9, 1060. [Google Scholar] [CrossRef]
- Hou, L.D.; Wang, L.N.; Wu, X.L.; Gao, W.; Zhang, J.X.; Huang, C.Y. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiol. 2019, 19, 231. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Z.; Ren, A.; Shi, L.; Shi, D.; Li, X.; Zhao, M.W. The mitogenactivated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet. Biol. 2017, 104, 6–15. [Google Scholar] [CrossRef]
- Guo, L.F.; Li, T.L.; Zhang, B.S.; Yan, K.X.; Meng, J.L.; Chang, M.C.; Hou, L.D. Family identification and functional study of copper transporter genes in Pleurotus ostreatus. Int. J. Mol. Sci. 2024, 25, 12154. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.L.; Huang, C.Y.; Zhang, Z.H.; Gao, W. Isolation and identification of pigments from oyster mushrooms with black, yellow and pink caps. Food Chem. 2022, 372, 131171. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wu, X.L.; Huang, C.Y.; Qiu, Z.H.; Wang, L.N.; Zhang, R.Y.; Zhang, J.X. Trehalose Induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl. Microbiol. Biot. 2019, 103, 5379–5390. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiolgy Spectr. 2017, 5, 10. [Google Scholar] [CrossRef]
- Schuster, M.; Martin-Urdiroz, M.; Higuchi, Y.; Hacker, C.; Kilaru, S.; Gurr, S.J.; Steinberg, G. Codelivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat. Microbiol. 2016, 1, 16149. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.D.; Wang, J.Y.; Li, T.L.; Zhang, B.S.; Yan, K.X.; Zhang, Z.H.; Geng, X.R.; Chang, M.C.; Meng, J.L. Transcriptome analysis revealed that cell wall regulatory pathways are involved in the tolerance of Pleurotus ostreatus mycelia to different heat stresses. J. Fungi 2025, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Samuilov, V.D.; Kiselevsky, D.B.; Dzyubinskaya, E.V.; Frolova, O.Y. Effects of superoxide dismutase inhibitors and glucose on cell death and generation of reactive oxygen species in pea leaves. Biochemistry 2021, 86, 878–886. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Peng, W.X.; Nam, W.L.; Yang, H.; Lee, X.Y.; Lee, Y.K.; Liew, R.K.; Ma, N.L.; Mohammad, A.; Christian, S.; et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J. Hazard. Mater. 2020, 400, 123156. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.R.; Sun, Y.; Xia, R.R.; Hou, Z.S.; Li, Y.T.; Wang, Y.F.; Pa, S.; Li, L.; Zhao, C.Y. Effect of light on quality of preharvest and postharvest edible mushrooms and its action mechanism: A review. Trends. Food Sci. Technol. Int. 2023, 139, 104119. [Google Scholar] [CrossRef]
- Unlu, E.S.; Koc, A. Effects of deleting mitochondrial antioxidant genes on life span. Ann. Ny. Acad. Sci. 2007, 1100, 505–509. [Google Scholar] [CrossRef]
- Leiter, E.; Park, H.S.; Kwon, N.J.; Han, K.H.; Emri, T.; Oláh, V.; Mészáros, I.; Dienes, B.; Vincze, J.; Csernoch, L.; et al. Characterization of the aodA, dnmA, mnSOD and pimA genes in Aspergillus nidulans. Sci. Rep. 2016, 6, 20523. [Google Scholar] [CrossRef]
- Latham, C.M.; Balawender, P.J.; Thomas, N.T.; Keeble, A.R.; Brightwell, C.R.; Ismaeel, A.; Wen, Y.; Fry, J.L.; Sullivan, P.G.; Johnson, D.L.; et al. Overexpression of manganese superoxide dismutase mitigates ACL injury-induced muscle atrophy, weakness and oxidative damage. Free. Radic. Biol. Med. 2024, 212, 191–198. [Google Scholar] [CrossRef]
- Wenzel, P.; Schuhmacher, S.; Kienhöfer, J.; Müller, J.; Hortmann, M.; Oelze, M.; Schulz, E.; Treiber, N.; Kawamoto, T.; Scharffetter-Kochanek, K.; et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc. Res. 2008, 80, 280–289. [Google Scholar] [CrossRef]
- Sun, Y.N.; Yolitz, J.; Alberico, T.; Sun, X.P.; Zou, S.G. Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent. Exp. Gerontol. 2014, 50, 57–63. [Google Scholar] [CrossRef]
- Fabrizio, P.; Pletcher, S.D.; Minois, N.; Vaupel, J.W.; Longo, V.D. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett. 2004, 557, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Van-Raamsdonk, J.M.; Hekimi, S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 2009, 5, e100361. [Google Scholar] [CrossRef] [PubMed]
- Sandra, Z.; Schwitalla, D.; Luce, K.; Hamann, A.; Osiewacz, H.D. Increasing mitochondrial superoxide dismutase abundance leads to impairments in protein quality control and ROS scavenging systems and to lifespan shortening. Exp. Gerontol. 2010, 45, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.S.; Li, C.Y.; Zhang, X.C.; Li, X.B.; Shi, L.; Ren, A.; Zhao, M.W. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: An essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, oxidative-stress resistance, and ganoderic acid biosynthesis regulation. Environ. Microbiol. 2014, 16, 1709–1728. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.H.; Chen, Q.; Zhao, M.R.; Huang, C.Y.; Wu, X.L. Genome-wide characterization of the Zn(II) 2 Cys 6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. PeerJ 2020, 8, e9336. [Google Scholar] [CrossRef]
- Wu, T.J.; Hu, C.C.; Xie, B.G.; Wei, S.L.; Zhang, L.; Zhu, Z.X.; Zhang, Z.Y.; Li, S.J. A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom. Appl. Microbiol. Biotechnol. 2020, 104, 5827–5844. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.J.; Hu, C.C.; Xie, B.G.; Zhang, L.; Li, S.J. A single transcription factor PDD1 determines development and yield of winter mushroom Flammulina velutipes. Appl. Environ. Microbiol. 2019, 85, e01735-19. [Google Scholar] [CrossRef]
- Hou, L.D.; Yan, K.X.; Dong, S.; Guo, L.F.; Liu, J.Y.; Wang, S.R.; Chang, M.C.; Meng, J.L. Transcriptome analysis revealed that hydrogen peroxide-regulated oxidative phosphorylation plays an important role in the formation of Pleurotus ostreatus cap color. J. Fungi 2023, 9, 823. [Google Scholar] [CrossRef]
- Qi, Y.C.; Ma, L.; Zhang, R.X.; Wen, Q.; Shen, J.W. Effects of mechanical damage on the primordium formation of Pleurotus ostreatus. Inst. Microbiol. 2021, 40, 1170–1179. (In Chinese) [Google Scholar]
- Bruno-Barcena, J.M.; Andrus, J.M.; Libby, S.L.; Klaenhammer, T.R.; Hassan, H.M. Expression of a heterologous manganese superoxide dismutase gene in intestinal Lactobacilli provides protection against hydrogen peroxide toxicity. Appl. Environ. Microbiol. 2004, 70, 4702–4710. [Google Scholar] [CrossRef]
- Coronado, J.E.; Mneimneh, S.; Epstein, S.L.; Qiu, W.G.; Lipke, P.N. Conserved processes and lineage-specific proteins in fungal cell wall evolution. Eukaryot Cell. 2007, 6, 2269–2277. [Google Scholar] [CrossRef]
- Pérez-Llano, Y.; Rodríguez-Pupo, E.C.; Druzhinina, I.S.; Chenthamara, K.; Cai, F.; Gunde-Cimerman, N.; Zala, P.; Gostincar, C.; Kostanjšek, R.; Folch-Mallol, J.L. Stress reshapes the physiological response of halophile fungi to salinity. Cells 2020, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Fernando, L.D.; Pérez-Llano, Y.; Dickwella, W.M.C.; Jacob, A.; Martínez-Ávila, L.; Lipton, A.S.; Gunde-Cimerman, N.; Latgé, J.P.; Batista-García, R.A.; Wang, T. Structural adaptation of fungal cell wall in hypersaline environment. Nat. Commun. 2023, 14, 7082. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hou, L.; Li, T.; Zhang, B.; Zhang, Z.; Deng, B.; Xu, L.; Geng, X.; Cheng, Y.; Chang, M.; Meng, J. The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall. J. Fungi 2026, 12, 48. https://doi.org/10.3390/jof12010048
Hou L, Li T, Zhang B, Zhang Z, Deng B, Xu L, Geng X, Cheng Y, Chang M, Meng J. The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall. Journal of Fungi. 2026; 12(1):48. https://doi.org/10.3390/jof12010048
Chicago/Turabian StyleHou, Ludan, Tonglou Li, Baosheng Zhang, Zehua Zhang, Bing Deng, Lijing Xu, Xueran Geng, Yanfen Cheng, Mingchang Chang, and Junlong Meng. 2026. "The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall" Journal of Fungi 12, no. 1: 48. https://doi.org/10.3390/jof12010048
APA StyleHou, L., Li, T., Zhang, B., Zhang, Z., Deng, B., Xu, L., Geng, X., Cheng, Y., Chang, M., & Meng, J. (2026). The Interference of Mnsod3 Enhances the Tolerance of Pleurotus ostreatus Mycelia to Abiotic Stress by Reshaping the Cell Wall. Journal of Fungi, 12(1), 48. https://doi.org/10.3390/jof12010048
