Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (580)

Search Parameters:
Keywords = anchoring energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 96
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 243
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

16 pages, 4134 KiB  
Article
Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol
by Hanqiao Xu, Hongwei Li, Xin An, Weiping Li, Rong Liu, Xinhong Zhao and Guixian Li
Catalysts 2025, 15(8), 704; https://doi.org/10.3390/catal15080704 - 24 Jul 2025
Viewed by 316
Abstract
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In [...] Read more.
The methanol oxidation reaction (MOR) of direct methanol fuel cells (DMFCs) is limited by the slow kinetic process and high reaction energy barrier, significantly restricting the commercial application of DMFCs. Therefore, developing MOR catalysts with high activity and stability is very important. In this paper, oxygen-functionalised activated carbon (FAC) with controllable oxygen-containing functional groups was prepared by adjusting the volume ratio of H2SO3/HNO3 mixed acid, and Pd/AC and Pd/FAC catalysts were synthesised via the hydrazine hydrate reduction method. A series of characterisation techniques and electrochemical performance tests were used to study the catalyst. The results showed that when V(H2SO3):V(HNO3) = 2:3, more defects were generated on the surface of the AC, and more oxygen-containing functional groups represented by C=O and C–OH were attached to the surface of the support, which increased the anchor sites of Pd and improved the dispersion of Pd nanoparticles (Pd NPs) on the support. At the same time, the mass–specific activity of Pd/FAC for MOR was 2320 mA·mgPd, which is 1.5 times that of Pd/AC, and the stability was also improved to a certain extent. In situ infrared spectroscopy further confirmed that oxygen functionalisation treatment promoted the formation and transformation of *COOH intermediates, accelerated the transformation of COL into COB, reduced the poisoning of COads species adsorbed to the catalyst, optimised the reaction path and improved the catalytic kinetic performance. Full article
Show Figures

Graphical abstract

15 pages, 2059 KiB  
Article
Strain Engineering of Cu2O@C2N for Enhanced Methane-to-Methanol Conversion
by Shuxin Kuai, Bo Li and Jingyao Liu
Molecules 2025, 30(15), 3073; https://doi.org/10.3390/molecules30153073 - 23 Jul 2025
Viewed by 235
Abstract
Inspired by the active site of methane monooxygenase, we designed a Cu2O cluster anchored in the six-membered nitrogen cavity of a C2N monolayer (Cu2O@C2N) as a stable and efficient enzyme-like catalyst. Density functional theory (DFT) [...] Read more.
Inspired by the active site of methane monooxygenase, we designed a Cu2O cluster anchored in the six-membered nitrogen cavity of a C2N monolayer (Cu2O@C2N) as a stable and efficient enzyme-like catalyst. Density functional theory (DFT) calculations reveal that the bridged Cu-O-Cu structure within C2N exhibits strong electronic coupling, which is favorable for methanol formation. Two competing mechanisms—the concerted and radical-rebound pathways—were systematically investigated, with the former being energetically preferred due to lower energy barriers and more stable intermediate states. Furthermore, strain engineering was employed to tune the geometric and electronic structure of the Cu-O-Cu site. Biaxial strain modulates the Cu-O-Cu bond angle, adsorption properties, and d-band center alignment, thereby selectively enhancing the concerted pathway. A volcano-like trend was observed between the applied strain and the methanol formation barrier, with 1% tensile strain yielding the overall energy barrier to methanol formation (ΔGoverall) as low as 1.31 eV. N2O effectively regenerated the active site and demonstrated strain-responsive kinetics. The electronic descriptor Δε (εd − εp) captured the structure–activity relationship, confirming the role of strain in regulating catalytic performance. This work highlights the synergy between geometric confinement and mechanical modulation, offering a rational design strategy for advanced C1 activation catalysts. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Figure 1

14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 396
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

12 pages, 2577 KiB  
Article
Single-Atom Catalysts Dispersed on Graphitic Carbon Nitride (g-CN): Eley–Rideal-Driven CO-to-Ethanol Conversion
by Jing Wang, Qiuli Song, Yongchen Shang, Yuejie Liu and Jingxiang Zhao
Nanomaterials 2025, 15(14), 1111; https://doi.org/10.3390/nano15141111 - 17 Jul 2025
Viewed by 331
Abstract
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol [...] Read more.
The electrochemical reduction of carbon monoxide (COER) offers a promising route for generating value-added multi-carbon (C2+) products, such as ethanol, but achieving high catalytic performance remains a significant challenge. Herein, we performed comprehensive density functional theory (DFT) computations to evaluate CO-to-ethanol conversion on single metal atoms anchored on graphitic carbon nitride (TM/g–CN). We showed that these metal atoms stably coordinate with edge N sites of g–CN to form active catalytic centers. Screening 20 TM/g–CN candidates, we identified V/g–CN and Zn/g–CN as optimal catalysts: both exhibit low free-energy barriers (<0.50 eV) for the key *CO hydrogenation steps and facilitate C–C coupling via an Eley–Rideal mechanism with a negligible kinetic barrier (~0.10 eV) to yield ethanol at low limiting potentials, which explains their superior COER performance. An analysis of d-band centers, charge transfer, and bonding–antibonding orbital distributions revealed the origin of their activity. This work provides theoretical insights and useful guidelines for designing high-performance single-atom COER catalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 299
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

23 pages, 9408 KiB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 280
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

20 pages, 6146 KiB  
Article
Adsorption and Decomposition Mechanisms of Li2S on 2D Thgraphene Modulated by Doping and External Electrical Field
by Ruofeng Zhang, Jiyuan Guo, Lanqing Chen and Fengjie Tao
Materials 2025, 18(14), 3269; https://doi.org/10.3390/ma18143269 - 10 Jul 2025
Viewed by 397
Abstract
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped [...] Read more.
The modification of materials is considered as one of the productive methods to facilitate the better electrochemical behavior of lithium–sulfur battery cathodes and inhibit the shuttle effect. Adopting first-principles calculations in this work, the application potential of pristine and B-, N-, and P-doped thgraphene as anchoring materials was investigated. The results reveal that pristine and doped substrates have an excellent structural stability, conductivity, and electrochemical activity. In the absence of an electric field, four substrates exhibit a strong anchoring effect on the Li2S cluster, where the adsorption energies fall within 3.10 to 4.48 eV. Even under the external electric field, all substrates exhibit notable structural stability during Li2S adsorption processes and maintain a high electrical conductivity, with adsorption energies exceeding 2.75 eV. Furthermore, it has been observed that the interfacial diffusion energy barriers for Li on all substrates are below 0.35 eV, which effectively enhances Li migration and facilitates reaction kinetics. Additionally, Li2S demonstrates a low decomposition energy barrier (varying from 0.84 to 1.55 eV) on pristine and doped substrates, enabling the efficient regeneration of the active material during the battery cycling. These findings offer a scientific guideline for the design of pristine and doped thgraphene as an excellent anchoring material for advanced lithium–sulfur batteries. Full article
Show Figures

Figure 1

12 pages, 7657 KiB  
Article
Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
by Xiangjie Liu, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan and Yuhai Dou
Catalysts 2025, 15(7), 663; https://doi.org/10.3390/catal15070663 - 7 Jul 2025
Viewed by 408
Abstract
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ [...] Read more.
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ LiF/HCl etching process, the aluminum layers in Ti3AlC2 were precisely removed, resulting in a few-layer Ti3C2Tx MXene with an increased interlayer spacing of 12.3 Å. Doping with the transition metals Fe, Co, Ni, and Cu demonstrated that Fe@Ti3C2 provided the optimal HER performance, characterized by an overpotential (η10) of 81 mV at 10 mA cm−2, a low Tafel slope of 33.03 mV dec−1, and the lowest charge transfer resistance (Rct = 5.6 Ω cm2). Mechanistic investigations revealed that Fe’s 3d6 electrons induce an upward shift in the d-band center of MXene, improving hydrogen adsorption free energy and reducing lattice distortion. This research lays a solid foundation for the design of non-precious metal catalysts using MXenes and highlights future avenues in bimetallic synergy and scalability. Full article
Show Figures

Graphical abstract

30 pages, 9068 KiB  
Article
Dynamic Behavior of Lighting GFRP Pole Under Impact Loading
by Mahmoud T. Nawar, Ahmed Elbelbisi, Mostafa E. Kaka, Osama Elhosseiny and Ibrahim T. Arafa
Buildings 2025, 15(13), 2341; https://doi.org/10.3390/buildings15132341 - 3 Jul 2025
Viewed by 248
Abstract
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base [...] Read more.
Vehicle collisions with street lighting poles generate extremely high impact forces, often resulting in serious injuries or fatalities. Therefore, enhancing the structural resilience of pole bases is a critical engineering objective. This study investigates a comprehensive dynamic analysis conducted with respect to base material behavior and energy absorption of GFRP lighting pole structures under impact loads. A finite element (FE) model of a 5 m-tall tapered GFRP pole with a steel base sleeve, base plate, and anchor bolts was developed. A 500 kg drop-weight impact at 400 mm above the base simulated vehicle collision conditions. The model was validated against experimental data, accurately reproducing the observed failure mode and peak force within 6%. Parametric analyses explored variations in pole diameter, wall thickness, base plate size and thickness, sleeve height, and anchor configuration. Results revealed that geometric parameters—particularly wall thickness and base plate dimensions—had the most significant influence on energy absorption. Doubling the wall thickness reduced normalized energy absorption by approximately 76%, while increases in base plate size and thickness reduced it by 35% and 26%, respectively. Material strength and anchor bolt configuration showed minimal impact. These findings underscore the importance of optimizing pole geometry to enhance crashworthiness. Controlled structural deformation improves energy dissipation, making geometry-focused design strategies more effective than simply increasing material strength. This work provides a foundation for designing safer roadside poles and highlights areas for further exploration in base configurations and connection systems. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

13 pages, 3803 KiB  
Article
Direct 2400 h Seawater Electrolysis Catalyzed by Pt-Loaded Nanoarray Sheets
by Huijun Xin, Zudong Shen, Xiaojie Li, Jinjie Fang, Haoran Sun, Chen Deng, Linlin Zhou and Yun Kuang
Catalysts 2025, 15(7), 634; https://doi.org/10.3390/catal15070634 - 29 Jun 2025
Viewed by 450
Abstract
Seawater electrolysis offers a sustainable route for large-scale, carbon-neutral hydrogen production, but its industrial application is limited by the poor efficiency and durability of current electrocatalysts under high current densities. Herein, we synthesized ultrasmall Pt nanoclusters uniformly anchored on FeCoNi phosphide nanosheet arrays, [...] Read more.
Seawater electrolysis offers a sustainable route for large-scale, carbon-neutral hydrogen production, but its industrial application is limited by the poor efficiency and durability of current electrocatalysts under high current densities. Herein, we synthesized ultrasmall Pt nanoclusters uniformly anchored on FeCoNi phosphide nanosheet arrays, forming a composite catalyst with outstanding hydrogen evolution reaction (HER) performance in alkaline seawater. The catalyst achieves an ultralow overpotential of 17 mV at −10 mA cm−2, far surpassing commercial Pt/C, and stably delivers industrial-level current densities up to 2000 A m−2 for over 2400 h with minimal voltage degradation and low energy consumption (4.16 kWh/Nm3 H2). X-ray photoelectron spectroscopy revealed strong interfacial electronic interactions between Pt and Fe/Co species, involving electron transfer from Pt that modulates its electronic structure, weakens hydrogen adsorption, and enhances both HER kinetics and Pt dispersion. This work presents a scalable and robust catalyst platform, bridging the gap between laboratory research and industrial seawater electrolysis for green hydrogen production. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Graphical abstract

26 pages, 6219 KiB  
Article
A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles
by Tao Deng, Xin Pang, Jiwei Sun, Chengliang Zhang, Daochun Wan, Shaojun Zhang and Xiaoqiang Zhang
Appl. Sci. 2025, 15(13), 7304; https://doi.org/10.3390/app15137304 - 28 Jun 2025
Viewed by 262
Abstract
As open-pit mining extends to greater depths, slope stability is becoming a critical factor in ensuring safe production. This issue is particularly pronounced in geological settings with weak interlayers, where sudden slope failures are more likely to occur, demanding precise and reliable stability [...] Read more.
As open-pit mining extends to greater depths, slope stability is becoming a critical factor in ensuring safe production. This issue is particularly pronounced in geological settings with weak interlayers, where sudden slope failures are more likely to occur, demanding precise and reliable stability assessment methods. In this study, a typical open-pit slope with weak interlayers was investigated. Acoustic testing and ground-penetrating radar were employed to identify rock mass structural features and delineate loose zones, enabling detailed rock mass zoning and the development of numerical simulation models for stability analysis. The results indicate that (1) the slope exhibits poor overall integrity, dominated by blocky to fragmented structures with well-developed joints and significant weak interlayers, posing a severe threat to stability; (2) in the absence of support, the slope’s dissipated energy, displacement, and plastic zone volume all exceeded the failure threshold (Δ < 0), and the safety factor was only 0.962, indicating a near-failure state; after implementing support measures, the safety factor increased to 1.31, demonstrating a significant improvement in stability; (3) prior to excavation, the energy damage index (ds) in the 1195–1240 m platform zone reached 0.82, which dropped to 0.48 after reinforcement, confirming the effectiveness of support in reducing energy damage and enhancing slope stability; (4) field monitoring data of displacement and anchor rod forces further validated the stabilizing effect of the support system, providing strong assurance for safe mine operation. By integrating cusp catastrophe theory with energy-based analysis, this study establishes a comprehensive evaluation framework for slope stability under complex geological conditions, offering substantial practical value for deep open-pit mining projects. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

14 pages, 2965 KiB  
Article
Interface-Engineered RuP2/Mn2P2O7 Heterojunction on N/P Co-Doped Carbon for High-Performance Alkaline Hydrogen Evolution
by Wenjie Wu, Wenxuan Guo, Zeyang Liu, Chenxi Zhang, Aobing Li, Caihua Su and Chunxia Wang
Materials 2025, 18(13), 3065; https://doi.org/10.3390/ma18133065 - 27 Jun 2025
Cited by 1 | Viewed by 352
Abstract
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP [...] Read more.
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP2/Mn2P2O7/NPC) framework as a high-performance HER catalyst, synthesized via a controlled pyrolysis–phosphidation strategy. The heterostructure achieves uniform dispersion of ultrafine RuP2/Mn2P2O7 heterojunctions with well-defined interfaces. Furthermore, phosphorus doping restructures the electronic configuration of Mn and Ru species at the RuP2/Mn2P2O7 heterointerface, enabling enhanced catalytic activity through the accelerated electron transfer and kinetics of the HER. This RuP2/Mn2P2O7/NPC catalyst exhibits exceptional HER activity with 1 M KOH, requiring only 69 mV of overpotential to deliver 10 mA·cm−2 and displaying a small Tafel slope of 69 mV·dec−1, rivaling commercial 20% Pt/C. Stability tests reveal negligible activity loss over 48 h, underscoring the robustness of the heterostructure. The RuP2/Mn2P2O7 heterojunction demonstrates markedly reduced overpotentials for the electrochemical HER process, highlighting its enhanced catalytic efficiency and improved cost-effectiveness compared to the conventional catalytic systems. This work establishes a strategy for designing a transition metal phosphide heterostructure through interfacial electronic modulation, offering broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

14 pages, 3788 KiB  
Article
Identification of Streptococcus pneumoniae Sortase A Inhibitors and the Interactive Mechanism
by Guizhen Wang, Jiahui Lu, Jingyao Wen, Yifan Duan, Hanbing Zhou, Xinli Peng and Zhandong Li
Crystals 2025, 15(7), 594; https://doi.org/10.3390/cryst15070594 - 24 Jun 2025
Viewed by 375
Abstract
Streptococcus pneumoniae (S. pneumoniae) Sortase A (SrtA) anchors virulence proteins to the surface of the cell wall by recognizing and cleaving the LPXTG motif. These toxins help bacteria adhere to and colonize host cells, promote biofilm formation, and trigger host inflammatory [...] Read more.
Streptococcus pneumoniae (S. pneumoniae) Sortase A (SrtA) anchors virulence proteins to the surface of the cell wall by recognizing and cleaving the LPXTG motif. These toxins help bacteria adhere to and colonize host cells, promote biofilm formation, and trigger host inflammatory responses. Therefore, SrtA is an ideal target for the development of new preparations for S. pneumoniae. In this study, we found that phloretin (pht) and phlorizin (phz) exhibited excellent affinities for SrtA based on virtual screening experiments. We analyzed the interactive mechanism between pht, phz, and alnusone (aln, a reported S. pneumoniae SrtA inhibitor) and SrtA based on molecular dynamics simulation experiments. The results showed that these inhibitors bound to the active pocket of SrtA, and the root mean square deviation (RMSD) and distance analyses showed that these compounds and SrtA maintained stable configuration and binding during the assay. The binding free energy analysis showed that both electrostatic forces (ele), van der Waals forces (vdw), and hydrogen bonds (Hbonds) promoted the binding between pht, phz, and SrtA; however, for the binding of aln and SrtA, the vdw force was much stronger than ele, and Hbonds were not found. The binding free energy decomposition showed that HIS141, ILE143, and PHE119 contributed more energy to promote pht and SrtA binding; ARG215, ASP188, and LEU210 contributed more energy to promote phz and SrtA binding; and HIS141, ASP209, and ARG215 contributed more energy to promote aln and SrtA binding. Finally, the transpeptidase activity of SrtA decreased significantly when treated with different concentrations of pht, phz, or aln, which inhibited S. pneumoniae biofilm formation and adhesion to A549 cells without affecting normal bacterial growth. These results suggest that pht, phtz, and aln are potential materials for the development of novel inhibitors against S. pneumoniae infection. Full article
Show Figures

Figure 1

Back to TopTop