Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Evolution and Etching Mechanism Analysis
2.2. Transition Metal Doping Characterizations
2.3. HER Catalytic Performance and Kinetic Mechanisms
2.4. Intrinsic Catalytic Activity and Interface Charge Transfer
2.5. Structure–Performance Relationship and Catalytic Mechanisms
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of MXene
3.3. Transition Metal Doping
3.4. Material Characterization
3.5. Electrode Preparation
3.6. Evaluation of Hydrogen Evolution Performance
3.7. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ryabicheva, M.; Zhigalenok, Y.; Abdimomyn, S.; Skakov, M.; Mimiyazov, A.; Zhanbolatova, G.; Mukhamedova, N.; Ospanova, Z.; Djenizian, T.; Malchik, F. From lab to market: Economic viability of modern hydrogen evolution reaction catalysts. Fuel 2025, 395, 135227. [Google Scholar] [CrossRef]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Wang, T.; Zhao, B.; Cai, W.; Liu, Y.; Jiao, S.; Li, Q.; Cao, R.; Liu, M. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Y.; Wang, Y.; Zhao, L.; Zhao, X.; Du, J.; Wu, H.; Chen, A. Next-generation green hydrogen: Progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano Micro Lett. 2024, 16, 237. [Google Scholar] [CrossRef]
- Wang, C.; Gun, S.; Zhang, H.; Shen, R.; Yuan, H.; Li, B. Perspectives on two-dimensional ultra-thin materials in energy catalysis and storage. APL Mater. 2023, 11, 050902. [Google Scholar] [CrossRef]
- Yong, W.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2018, 119, 1806–1854. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Stern, L.-A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. [Google Scholar] [CrossRef]
- Handoko, A.D.; Steinmann, S.N.; Seh, Z.W. Theory-guided materials design: Two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horiz. 2019, 4, 809–827. [Google Scholar] [CrossRef]
- Din, M.A.U.; Shah, S.S.A.; Javed, M.S.; Sohail, M.; Rehman, A.; Nazir, M.A.; Assiri, M.A.; Najam, T.; Cheng, N. Synthesis of MXene-based single-atom catalysts for energy conversion applications. Chem. Eng. J. 2023, 474, 145700. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Deng, Y.; Jiang, J.; Ma, H.; Zou, J. Advances in MXene-based single-atom catalysts for electrocatalytic applications. Coord. Chem. Rev. 2025, 529, 216462. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, D.; Fan, G.; Chen, Y.; Fan, Y.; Liu, B. N-doped carbon coated Ti3C2 MXene as a high-efficiency catalyst for improving hydrogen storage kinetics and stability of NaAlH4. Renew. Energy 2022, 188, 778–787. [Google Scholar] [CrossRef]
- Kuznetsov, D.A.; Chen, Z.; Kumar, P.V.; Tsoukalou, A.; Kierzkowska, A.; Abdala, P.M.; Safonova, O.V.; Fedorov, A.; Müller, C.R. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. J. Am. Chem. Soc. 2019, 141, 17809–17816. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Lv, Z.; Liu, R.; Li, L.; Wang, J.; Yang, W.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem. 2022, 134, e202117617. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.-C.; Wang, Y.; Deng, H.; Shi, Y.; Wei, D.; Li, M.; Dong, C.-L.; Jin, H.; Mao, S.S.; et al. Atomically dispersed metal–nitrogen–carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction. ACS Catal. 2023, 13, 2374–2385. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Zhuang, Z.; Deng, Y.; Gao, G.; Li, J.; Meng, A.; Li, G.; Wang, L.; Li, Z.; et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem. Int. Ed. 2024, 63, e202404968. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, J.; Song, W.; Yang, X.; Zhang, T.; Huang, Z.; Wang, H.; Han, X.; Hu, W. Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 2023, 13, 2300148. [Google Scholar] [CrossRef]
- Zheng, R.; Du, D.; Yan, Y.; Liu, S.; Wang, X.; Shu, C. Cation vacancy modulated interfacial electronic interactions for enhanced electrocatalysis in lithium–oxygen batteries. Adv. Funct. Mater. 2024, 34, 2316440. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Li, C.; Xu, Y.; An, Y.; Liu, W.; Hu, T.; Yi, S.; Wang, K.; Sun, X.; et al. Cation-deficient T-Nb2O5/graphene hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors. Chem. Eng. J. 2023, 468, 143507. [Google Scholar] [CrossRef]
- Ulas, B.; Çetin, T.; Kaya, Ş.; Akinay, Y.; Kivrak, H. Novel Ti3C2X2 MXene supported BaMnO3 nanoparticles as hydrazine electrooxidation catalysts. Int. J. Hydrogen Energy 2024, 58, 726–736. [Google Scholar] [CrossRef]
- Yan, D.; Xia, C.; Zhang, W.; Hu, Q.; He, C.; Xia, B.Y.; Wang, S. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317. [Google Scholar] [CrossRef]
- Peng, L.; Yang, N.; Yang, Y.; Wang, Q.; Xie, X.; Sun-Waterhouse, D.; Shang, L.; Zhang, T.; Waterhouse, G.I.N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 24612–24619. [Google Scholar] [CrossRef]
- Zhan, F.; Wen, G.; Li, R.; Feng, C.; Liu, Y.; Liu, Y.; Zhu, M.; Zheng, Y.; Zhao, Y.; La, P. A comprehensive review on oxygen vacancies modified photocatalysts: Synthesis, characterization, and applications. Phys. Chem. Chem. Phys. 2024, 26, 11182–11207. [Google Scholar] [CrossRef]
- Khatun, N.; Roy, S.C. Optimization of etching and sonication time to prepare monolayer Ti3C2Tx MXene flakes: A structural, vibrational, and optical spectroscopy study. Micro Nanostructures 2022, 167, 207256. [Google Scholar] [CrossRef]
- Sun, W.; Shah, S.A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M.J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Zhang, Q.; Li, Z.; Zhao, Y.; Wang, H. Alkanolamine intercalation assisted liquid phase exfoliation of titanium carbide MXene nanosheets for highly efficient photocatalytic CO2 reduction. J. Mol. Liq. 2022, 367, 120578. [Google Scholar] [CrossRef]
- Wang, H.; Lee, J.-M. Recent advances in structural engineering of MXene electrocatalysts. J. Mater. Chem. A 2020, 8, 10604–10624. [Google Scholar] [CrossRef]
- Anand, R.; Nissimagoudar, A.S.; Umer, M.; Ha, M.; Zafari, M.; Umer, S.; Lee, G.; Kim, K.S. Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for Water Splitting via Distinctive Mechanistic Pathways. Adv. Energy Mater. 2021, 11, 2102388. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, X.; Xiong, Y.; Tang, Y.; Ma, X.; Tao, Q.; Sun, C.; Xu, W. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur. Polym. J. 2022, 167, 111063. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, M.; Li, Y.; Ye, C.; Chen, J.; Ye, J.; Zhang, Q.; Li, J.; Zhou, Z.; Fu, X.-Z.; et al. p–d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem. 2022, 134, e202115735. [Google Scholar] [CrossRef]
- Seh, Z.W.; Fredrickson, K.D.; Anasori, B.; Kibsgaard, J.; Strickler, A.L.; Lukatskaya, M.R.; Gogotsi, Y.; Jaramillo, T.F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, Z.; Zhang, X.; Zhang, J.; Zhou, Y.; Li, H.; Qin, H.; Bo, Y.; Pan, Z. Nb4C3Tx (MXene) as a new stable catalyst for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 1955–1966. [Google Scholar] [CrossRef]
- Tran, M.H.; Schäfer, T.; Shahraei, A.; Dürrschnabel, M.; Molina-Luna, L.; Kramm, U.I.; Birkel, C.S. Adding a new member to the MXene family: Synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Appl. Energy Mater. 2018, 1, 3908–3914. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, L.; An, Y.; Wu, H.; Yao, N.; Fan, X.; Guo, X. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 8976–8982. [Google Scholar] [CrossRef]
- Xu, C.; He, H.; Zhu, Y.; Wang, Y.; Hao, L.; Huang, H. Mutual-coupling 0D/1D/2D heterostructure of cobalt selenide/carbon nanotube/MXene for enhanced electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2025, 100, 1038–1045. [Google Scholar] [CrossRef]
- Li, Z.; Qi, Z.; Wang, S.; Ma, T.; Zhou, L.; Wu, Z.; Luan, X.; Lin, F.-Y.; Chen, M.; Miller, J.T.; et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions. Nano Lett. 2019, 19, 5102–5108. [Google Scholar] [CrossRef]
- Cui, C.; Cheng, R.; Zhang, C.; Wang, X. Pt immobilized spontaneously on porous MXene/MAX hybrid monolith for hydrogen evolution reaction. Chin. Chem. Lett. 2020, 31, 988–991. [Google Scholar] [CrossRef]
- Murugan, N.; Thangarasu, S.; Venkatachalam, P.; Bhosale, M.; Kang, M.; Yu, M.; Oh, T.H.; Kim, Y.A. Fabrication of nickel nanoparticles anchored on a 2D double transition metal MXene for efficient hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy 2024, 141, 762–772. [Google Scholar] [CrossRef]
- Le, T.A.; Bui, Q.V.; Tran, N.Q.; Cho, Y.; Hong, Y.; Kawazoe, Y.; Lee, H. Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 16879–16888. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, C.; Sheng, M.; Yin, X.; Que, W.; Henzie, J.; Yamauchi, Y. Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range. Chem. Eng. J. 2021, 423, 130183. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Dai, R.; Zhao, P.; Wang, Y. MXene and Ru doping co-enhanced the hydrogen evolution reaction performance of cobalt pyridinedicarboxylic coordinated polymer. J. Colloid Interface Sci. 2025, 690, 137278. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.; Ansari, M.Z.; Son, Y.; Lee, S.; Kang, Y.; Kim, S.-H. Precious metal Ir-ALD process engineered 2D V-MXene advanced heterostructures for next-generation hydrogen evolution electrocatalyst. Mater. Today Nano 2025, 29, 100557. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Yu, Z.; Addad, A.; Wang, Q.; Roussel, P.; Szunerits, S.; Boukherroub, R. Ruthenium oxide nanoparticles immobilized on Ti3C2 MXene nanosheets for boosting seawater electrolysis. ACS Appl. Mater. Interfaces 2023, 15, 58345–58355. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Xu, J.; Zhang, Z.; Qi, K.; Jin, G. N, S-doped Ti3C2 MXene quantum dots-anchored metal ruthenium: Efficient electrocatalyst for pH-universal hydrogen evolution reaction. J. Colloid Interface Sci. 2025, 689, 137245. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.-P.; Cao, Y.; Portniagin, A.; Tang, B.; Wang, S.; Liu, Q.; Yu, D.Y.W.; Zhong, X.; Zheng, X.; et al. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti3C2Tx MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS Nano 2024, 18, 4256–4268. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, E.; Cui, S.; Yang, S.; Zou, X.; Gong, Y. Single-Atom Pt Anchored on Oxygen Vacancy of Monolayer Ti3C2Tx for Superior Hydrogen Evolution. Nano Lett. 2022, 22, 1398–1405. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, X.; Huang, C.; Sun, S.; Yuan, D.; Dou, Y. Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution. Catalysts 2025, 15, 663. https://doi.org/10.3390/catal15070663
Liu X, Chen X, Huang C, Sun S, Yuan D, Dou Y. Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution. Catalysts. 2025; 15(7):663. https://doi.org/10.3390/catal15070663
Chicago/Turabian StyleLiu, Xiangjie, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan, and Yuhai Dou. 2025. "Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution" Catalysts 15, no. 7: 663. https://doi.org/10.3390/catal15070663
APA StyleLiu, X., Chen, X., Huang, C., Sun, S., Yuan, D., & Dou, Y. (2025). Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution. Catalysts, 15(7), 663. https://doi.org/10.3390/catal15070663