A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles
Abstract
1. Introduction
2. Slope Excavation Energy Discontinuity Criterion
2.1. Principle of Conservation of Energy for Slope Destabilization
2.2. Singular Point Catastrophe Theory
2.3. Establishment of Destabilization Criteria for Slope Excavation
3. Engineering Context and Site Condition
3.1. Slope Rock Mass Structure Testing Research
3.1.1. Geological Radar Testing
3.1.2. Geological Radar Test Results
- (1)
- Internal Rock Mass Integrity Analysis of the Transfer Station Slope
- (2)
- Geological Radar Detection Results for Weak Interlayers
3.2. Acoustic Testing
Acoustic Testing Results
4. Numerical Calculation of Slopes Based on Weibull Parameter Random Distribution Model
4.1. Random Distribution Model of Rock Mass Parameters
- (1)
- Establish the slope numerical calculation model.
- (2)
- Fix the boundaries on the four sides and the bottom of the model.
- (3)
- Achieve initial geostatic stress equilibrium.
- (4)
- Use Fish script to write the code for calculating dissipated energy.
- (5)
- Extend downward by one step and record the results.
- (6)
- Repeat the previous step until the excavation reaches the 13th step.
4.2. Mining Slope Stability Analysis Lower Extension Mining
4.2.1. Analysis of Slope Energy Evolution
4.2.2. Analysis of Slope Displacement Evolution
4.2.3. Plastic Zone and Maximum Shear Strain Analysis
4.3. Slope Stability Analysis Based on Cusp Mutation Theory
4.3.1. Analysis of Instability and Sudden Change in Slopes with Energy Damage
4.3.2. Dissipated Energy Mutation Analysis
4.3.3. Safety Factor Variation Analysis
4.4. Slope Stabilization Measures
4.4.1. Research on Slope Stability Based on the Theory of Singular Point Mutation
4.4.2. Rock Energy Damage Analysis
4.5. Field Verification of Anchor Cable Axial Force and Slope Displacement Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs. Geo Inf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
- Wang, S.; Cao, B.; Bai, R.; Liu, G. Dynamic optimization design of open-pit mine full-boundary slope considering uncertainty of rock mass strength. Sci. Rep. 2024, 14, 19710. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, K.; Li, J. Prediction of slope stability using four supervised learning methods. IEEE Access 2018, 6, 31169–31179. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Geitner, C.; Wellstein, C.; Zerbe, S. The influence of herbaceous vegetation on slope stability—A review. Earth-Sci. Rev. 2020, 209, 103328. [Google Scholar] [CrossRef]
- Cao, Y.; Yu, Q.; Yang, T.; Zhu, W.; Le, Z. Numerical study on the fracturing mechanism of the belt conveyor roadway in dagushan Open-Pit mine and control measures evaluation. Rock Mech. Rock Eng. 2022, 55, 6663–6682. [Google Scholar] [CrossRef]
- Huang, A.; Zhu, Y.P.; Ye, S.H.; Fang, G.G. Three-dimensional stability of a fill slope reinforced by a frame beam anchor plate. Sci. Rep. 2024, 14, 25250. [Google Scholar] [CrossRef]
- Ohtsuka, S.; Miyata, Y.; Ikemoto, H.; Iwabe, T. Slope Stability Analysis with Rigid-Plastic Finite Element Method. Landslides 2001, 38, 235–243. [Google Scholar] [CrossRef]
- Bezie, G.; Chala, E.T.; Jilo, N.Z.; Birhanu, S.; Berta, K.K.; Assefa, S.M.; Gissila, B. Rock slope stability analysis of a limestone quarry in a case study of a National Cement Factory in Eastern Ethiopia. Sci. Rep. 2024, 14, 18541. [Google Scholar] [CrossRef]
- Zhang, Z.; Mei, G.; Xu, N. A geometrically and locally adaptive remeshing method for finite difference modeling of mining-induced surface subsidence. J. Rock Mech. Geotech. Eng. 2022, 14, 219–231. [Google Scholar] [CrossRef]
- Xu, G.-J.; Zhong, K.-Z.; Fan, J.-W.; Zhu, Y.-J.; Zhang, Y.-Q. Stability analysis of cohesive soil embankment slope based on discrete element method. J. Central South Univ. 2020, 27, 1981–1991. [Google Scholar] [CrossRef]
- Lianheng, Z.; Dongliang, H.; Shuaihao, Z.; Xiao, C.; Yibo, L.; Min, D. A new method for constructing finite difference model of soil-rock mixture slope and its stability analysis. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 2021, 138, 104605. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Jiang, Y.; Tian, P.; Cao, A.; Long, Y.; Liu, X.; Si, P. Slope monitoring optimization considering three-dimensional deformation and failure characteristics using the strength reduction method: A case study. Sci. Rep. 2023, 13, 4049. [Google Scholar] [CrossRef] [PubMed]
- I Urbancic, T.; Trifu, C.-I. Recent advances in seismic monitoring technology at Canadian mines. J. Appl. Geophys. 2000, 45, 225–237. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, G.; Zhang, Q.; Rodríguez, A.R. An investigation of integrating the finite element method (FEM) with grey system theory for geotechnical problems. PLoS ONE 2022, 17, e0270400. [Google Scholar] [CrossRef]
- Foong, L.K.; Moayedi, H. Slope stability evaluation using neural network optimized by equilibrium optimization and vortex search algorithm. Eng. Comput. 2022, 38, 1269–1283. [Google Scholar] [CrossRef]
- Salunkhe, D.P.; Bartakke, R.N.; Chvan, G.; Kothavale, P.R.; Digvijay, P. An overview on methods for slope stability analysis. Int. J. Eng. Res. Technol. (IJERT) 2017, 6, 2278-0181. [Google Scholar]
- Deng, D.-P.; Zhao, L.-H.; Li, L. Limit equilibrium method for slope stability based on assumed stress on slip surface. J. Central South Univ. 2016, 23, 2972–2983. [Google Scholar] [CrossRef]
- Li, S.C.; Zhou, Z.Q.; Ye, Z.H.; Li, L.P.; Zhang, Q.Q.; Xu, Z.H. Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel. J. Appl. Geophys. 2015, 116, 247–257. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Han, L.; Chen, L.; Wang, L. Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 2022, 14, 1089–1099. [Google Scholar] [CrossRef]
- Guo, Q.F.; Pan, J.L.; Cai, M.F.; Zhang, Y. Analysis of progressive failure mechanism of rock slope with locked section based on energy theory. Energies 2020, 13, 1128. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, B.; Zhu, J.; Rao, P. Slope Stability Analysis Using Energy Method Combined with Radial Strip Division Method. J. Univ. Shanghai Sci. Technol. 2020, 42, 63–69. [Google Scholar]
- Liao, Y.; Deng, T.; Zhang, W.; Xu, Z. Research on the stability and support of peripheral rock in roadway excavation based on the theory of cusp mutation. Nonferrous Met. Eng. 2022, 12, 116–123. [Google Scholar]
- Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Sci. Rev. 2019, 193, 333–349. [Google Scholar] [CrossRef]
- Yang, K.; Wang, T.; Ma, Z. Application of cusp catastrophe theory to reliability analysis of slopes in open-pit mines. Min. Sci. Technol. 2010, 20, 71–75. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, G.; Che, A.; Wu, Z.; Zhou, H.; Liu, Y. Reconstruction method for a three-demensional discrete element numerical model of landslides using an integrated multi-electrode resistivity tomography method and an unmanned aerial vehicle survey. J. Appl. Geophys. 2024, 228, 105469. [Google Scholar] [CrossRef]
- Yang, K.; Shi, C.; Wang, J.F. Applying Catastrophe Theory to Slope Reliability Analysis. Boundaries of Rock Mechanics; CRC Press: Boca Raton, FL, USA, 2008; pp. 577–582. [Google Scholar]
- Mauldon, M.; Arwood, S.; Pionke, C.D. Energy approach to rock slope stability analysis. J. Eng. Mech. 1998, 124, 395–404. [Google Scholar] [CrossRef]
- Chen, M.-L.; Zhou, J.-W.; Yang, X.-G. A novel approach for slope stability evaluation considering landslide dynamics and its application to reservoir landslide. Nat. Hazards 2024, 120, 3589–3621. [Google Scholar] [CrossRef]
- Asteris, P.G.; Rizal, F.I.M.; Koopialipoor, M.; Roussis, P.C.; Ferentinou, M.; Armaghani, D.J.; Gordan, B. Slope stability classification under seismic conditions using several tree-based intelligent techniques. Appl. Sci. 2022, 12, 1753. [Google Scholar] [CrossRef]
- Xu, N.W.; Dai, F.; Liang, Z.Z.; Zhou, Z.; Sha, C.; Tang, C.A. The dynamic evaluation of rock slope stability considering the effects of microseismic damage. Rock Mech. Rock Eng. 2014, 47, 621–642. [Google Scholar] [CrossRef]
- Cardarelli, E.; Marrone, C.; Orlando, L. Evaluation of tunnel stability using integrated geophysical methods. J. Appl. Geophys. 2003, 52, 93–102. [Google Scholar] [CrossRef]
- Sainoki, A.; Mitri, H.S. Simulating intense shock pulses due to asperities during fault-slip. J. Appl. Geophys. 2014, 103, 71–81. [Google Scholar] [CrossRef]
- Qin, S.; Wang, S.; Jiao, J.J. A cusp catastrophe model of instability of slip-buckling slope. Rock Mech. Rock Eng. 2001, 34, 119–134. [Google Scholar] [CrossRef]
- Thomas, J.; Gupta, M.; Prusty, G. Assessing global parameters of slope stability model using Earth data observations for forecasting rainfall–induced shallow landslides. J. Appl. Geophys. 2023, 212, 104994. [Google Scholar] [CrossRef]
- Chen, D.-G.; Gao, H.; Ji, C.; Chen, X. Stochastic cusp catastrophe model and its Bayesian computations. J. Appl. Stat. 2021, 48, 2714–2733. [Google Scholar] [CrossRef]
- Qi, Y.; Tian, G.; Bai, M.; Song, L. Research on construction deformation prediction and disaster warning of karst slope based on mutation theory. Sci. Rep. 2022, 12, 15182. [Google Scholar] [CrossRef]
- Li, C.C.; Zhao, T.; Zhang, Y.; Wan, W. A study on the energy sources and the role of the surrounding rock mass in strain burst. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 2022, 154, 105114. [Google Scholar] [CrossRef]
- Lann, T.; Bao, H.; Lan, H.; Zheng, H.; Yan, C.; Peng, J. Hydro-mechanical effects of vegetation on slope stability: A review. Sci. Total Environ. 2024, 926, 171691. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, Y.; Chen, Z. New energy criterion for rock slope excavation-induced failure based on catastrophe theory: Methodology and applications. Bull. Eng. Geol. Environ. 2024, 83, 140. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, R. Slope stability analysis based on finite element strength reduction theory. Adv. Front. Res. Eng. Struct. 2023, 2, 77–83. [Google Scholar]
- Li, L.; Tang, C.; Zhu, W.; Liang, Z. Numerical analysis of slope stability based on the gravity increase method. Comput. Geotech. 2009, 36, 1246–1258. [Google Scholar] [CrossRef]
- Deng, D.-P.; Li, L.; Zhao, L.-H. Stability analysis of slopes reinforced with anchor cables and optimal design of anchor cable parameters. Eur. J. Environ. Civ. Eng. 2021, 25, 2425–2440. [Google Scholar] [CrossRef]
- Jia, Z.; Tao, L.; Bian, J.; Wen, H.; Wang, Z.; Shi, C.; Zhang, H. Research on influence of anchor cable failure on slope dynamic response. Soil Dyn. Earthq. Eng. 2022, 161, 107435. [Google Scholar] [CrossRef]
- Pei, H.; Zhang, S.; Borana, L.; Zhao, Y.; Yin, J. Slope stability analysis based on real-time displacement measurements. Measurement 2019, 131, 686–693. [Google Scholar] [CrossRef]
- Li, G.; Li, N.; Yu, C.; He, M. Bearing capacity behaviour of prestressed anchor cable under slope blasting excavation. Arab. J. Geosci. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Osasan, K.S.; Afeni, T.B. Review of surface mine slope monitoring techniques. J. Min. Sci. 2010, 46, 177–186. [Google Scholar] [CrossRef]
Weak Structural Surface | Occurrence | Thickness (cm) | Opening Width | Filling Material |
---|---|---|---|---|
L1 | 160 ∠ 24 | 35 | Large | Chlorite |
L2 | 282 ∠ 46 | 11~20 | Large | Chlorite |
Rock Layer | Young/kPa | Poisson | Cohesion/kPa | Friction Angle/° | Tension/kPa | Density/(KN/m3) |
---|---|---|---|---|---|---|
Coarse-Grained Diorite | 6.9 × 106 | 0.26 | 0.88 × 103 | 37 | 0.96 × 103 | 3.1 |
Fine-Grained Diorite | 6.5 × 106 | 0.28 | 0.65 × 103 | 36 | 0.87 × 103 | 3.1 |
Ore | 7.5 × 106 | 0.26 | 0.704 × 103 | 37 | 0.95 × 103 | 3.4 |
Weak Layers | 0.8 × 106 | 0.33 | 0.02 × 103 | 24 | 0.032 × 103 | 2.5 |
Zone I | 7.01 × 106 | 0.26 | 0.72 × 103 | 36.12 | 0.26 × 103 | 3.6 |
Zone II | 2.81 × 106 | 0.33 | 0.56 × 103 | 32.92 | 0.04 × 103 | 3.2 |
Zone III | 6.17 × 106 | 0.27 | 0.64 × 103 | 34.89 | 0.15 × 103 | 3.22 |
Evaluation Indicators | Excavation Step | u | v | Δ | FOS |
---|---|---|---|---|---|
Dissipated energy | 5 | −3 | −5 | 459 | 1.134 |
6 | −4 | −13 | 4051 | 1.121 | |
7 | −6 | −21 | 8835 | 1.096 | |
8 | −23 | −99 | 167,291 | 1.075 | |
9 | −19 | −81 | 122,275 | 1.063 | |
10 | −22 | −101 | 190,243 | 1.042 | |
11 | −26 | −145 | 427,067 | 1.034 | |
12 | −43 | −309 | 1,941,931 | 1.025 | |
13 | −23 | −29 | −74,629 | 0.962 | |
Displacement | 5 | −3 | −22 | 12,852 | 1.134 |
6 | −19 | −65 | 59,203 | 1.121 | |
7 | −6 | −24 | 13,824 | 1.096 | |
8 | −40 | −193 | 493,723 | 1.075 | |
9 | −13 | −105 | 280,099 | 1.063 | |
10 | −19 | 653 | 11,458,171 | 1.042 | |
11 | −60 | −363 | 1,829,763 | 1.034 | |
12 | −109 | −954 | 14,212,900 | 1.025 | |
13 | −98.8 | −452.3 | −2,191,909 | 0.962 | |
Plastic zone | 5 | −3 | −6 | 756 | 1.134 |
6 | −5 | −9 | 1187 | 1.121 | |
7 | −8 | −24 | 11,456 | 1.096 | |
8 | −12 | −36 | 21,168 | 1.075 | |
9 | −21 | −74 | 73,764 | 1.063 | |
10 | −22 | −87 | 119,179 | 1.042 | |
11 | −67 | −416 | 2,266,408 | 1.034 | |
12 | −69 | 496 | 4,014,360 | 1.025 | |
13 | −28 | 24 | −160,064 | 0.962 |
Zone | Young/Gpa | Poisson | Cross-Sectional Area/m2 | Prestress/KN | Anchorage Length/m |
---|---|---|---|---|---|
Supported Area | 200 | 0.2 | 2.39 × 10−3 | 1000 KN | 44 |
Support Design zone | 200 | 0.2 | 2.39 × 10−3 | 1000 KN | 50 |
Young/Gpa | Poisson | Cross-Sectional Area/m2 |
---|---|---|
24 | 0.2 | 0.2025 |
Evaluation Indicators | u | v | Δ | Fos |
---|---|---|---|---|
Dissipative energy | −105.7 | −1116.7 | 777,566,612.7 | 1.31 |
Displacement | −0.5798 | 0.2726 | 0.447 | 1.31 |
Plastic zone | −14.5 | 215.7 | 1,231,826.23 | 1.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, T.; Pang, X.; Sun, J.; Zhang, C.; Wan, D.; Zhang, S.; Zhang, X. A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles. Appl. Sci. 2025, 15, 7304. https://doi.org/10.3390/app15137304
Deng T, Pang X, Sun J, Zhang C, Wan D, Zhang S, Zhang X. A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles. Applied Sciences. 2025; 15(13):7304. https://doi.org/10.3390/app15137304
Chicago/Turabian StyleDeng, Tao, Xin Pang, Jiwei Sun, Chengliang Zhang, Daochun Wan, Shaojun Zhang, and Xiaoqiang Zhang. 2025. "A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles" Applied Sciences 15, no. 13: 7304. https://doi.org/10.3390/app15137304
APA StyleDeng, T., Pang, X., Sun, J., Zhang, C., Wan, D., Zhang, S., & Zhang, X. (2025). A Multi-Method Approach to the Stability Evaluation of Excavated Slopes with Weak Interlayers: Insights from Catastrophe Theory and Energy Principles. Applied Sciences, 15(13), 7304. https://doi.org/10.3390/app15137304