Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Materials
2.2. Photocatalytic H2 Evolution Performance
2.3. Mechanism of Photocatalytic H2 Production
3. Materials and Methods
3.1. Materials Syntheses
3.2. Characterizations
3.3. Photoelectrochemical (PEC) Measurements
3.4. Photocatalytic Hydrogen Evolution Reaction (HER) Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, Z.; Yang, C.; Li, L.; Jiang, J. Rational Constructing 2D/3D p-n Heterojunctions to Modulate Hydrogen Evolution Efficient Pathways for Enhances Photocatalytic Hydrogen Production. J. Ind. Eng. Chem. 2025, 142, 449–462. [Google Scholar] [CrossRef]
- Kumaravel, V.; Imam, M.D.; Badreldin, A.; Chava, R.K.; Do, J.Y.; Kang, M.; Abdel-Wahab, A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts 2019, 9, 276. [Google Scholar] [CrossRef]
- Rasool, M.A.; Sattar, R.; Anum, A.; Al-Hussain, S.A.; Ahmad, S.; Irfan, A.; Zaki, M.E. An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production. Catalysts 2023, 13, 66. [Google Scholar] [CrossRef]
- Mohsin, M.; Ishaq, T.; Bhatti, I.A.; Jilani, A.; Melaibari, A.A.; Abu-Hamdeh, N.H. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel. Nanomaterials 2023, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, X.; Peng, L.; Luo, J.; Ning, X.; Fan, X.; Zhou, X.; Zhou, X. Pd (Ii) Coordination Molecule Modified G-C3N4 for Boosting Photocatalytic Hydrogen Production. J. Colloid Interface Sci. 2024, 671, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, T.; Wang, Y.; Chen, Y.; Luo, W.; Wu, Y.; Xie, Y.; Wang, Y.; Zhang, Y. Engineering of Bimetallic Au–Pd Alloyed Particles on Nitrogen Defects Riched G-C3N4 for Efficient Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2024, 63, 1116–1127. [Google Scholar] [CrossRef]
- Palani, G.; Apsari, R.; Hanafiah, M.M.; Venkateswarlu, K.; Lakkaboyana, S.K.; Kannan, K.; Shivanna, A.T.; Idris, A.M.; Yadav, C.H. Metal-Doped Graphitic Carbon Nitride Nanomaterials for Photocatalytic Environmental Applications—A Review. Nanomaterials 2022, 12, 1754. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xiao, H.; Yang, J.; Luan, X.; Fang, D.; Yang, L.; Zi, J.; Lian, Z. Modulation of Electronic Density in Ultrathin G-C3N4 for Enhanced Photocatalytic Hydrogen Evolution through an Efficient Hydrogen Spillover Pathway. Appl. Catal. B Environ. 2024, 341, 123334. [Google Scholar] [CrossRef]
- Sewnet, A.; Alemayehu, E.; Abebe, M.; Mani, D.; Thomas, S.; Kalarikkal, N.; Lennartz, B. Single-Step Synthesis of Graphitic Carbon Nitride Nanomaterials by Directly Calcining the Mixture of Urea and Thiourea: Application for Rhodamine B (Rhb) Dye Degradation. Nanomaterials 2023, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Shan, P.; Shi, W.; Guo, F. Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black G-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein. Catalysts 2025, 15, 504. [Google Scholar] [CrossRef]
- Zhao, B.; Gong, W.; Liu, X.; Guo, H.; Yan, L.; Gao, A.; Lin, J. Ternary Synergism: Synthesis of S, C Co-Doped G-C3N4 Hexagonal Ultra-Thin Tubular Composite Photocatalyst for Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2024, 61, 1317–1329. [Google Scholar] [CrossRef]
- Meng, D.; Ruan, X.; Xu, M.; Jiao, D.; Fang, G.; Qiu, Y.; Zhang, Y.; Zhang, H.; Ravi, S.K.; Cui, X. An S-Scheme Artificial Photosynthetic System with H-TiO2/G-C3N4 Heterojunction Coupled with Mxene Boosts Solar H2 Evolution. J. Mater. Sci. Technol. 2025, 211, 22–29. [Google Scholar] [CrossRef]
- Ma, Z.; Jia, X.; Song, X.; Xie, Y.; Zhao, L.; Zhang, J. Efficient Photocatalytic Hydrogen Evolution by in Situ Construction of Nb4+ Charge-Carrier Channels in Hollow Porous Tubular C3N4 and Nb2O5 Z-Scheme Heterojunctions. Mater. Today Phys. 2024, 46, 101523. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Z.; Tan, L.; Zhang, Z.; Chen, B.; Xia, X.; Cheng, G.; Chen, X. Surface Modification of G-C3N4 for Enhanced Photocatalytic Activity Via a Simple Illumination in Pure Water. Appl. Surf. Sci. 2024, 672, 160794. [Google Scholar] [CrossRef]
- Zheng, D.D.; Huang, C.J.; Wang, X.C. Post-Annealing Reinforced Hollow Carbon Nitride Nanospheres for Hydrogen Photosynthesis. Nanoscale 2015, 7, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Su, T.M.; Shao, Q.; Qin, Z.Z.; Guo, Z.H.; Wu, Z.L. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal. 2018, 8, 2253–2276. [Google Scholar] [CrossRef]
- Bury, D.; Jakubczak, M.; Purbayanto, M.A.K.; Rybak, M.; Birowska, M.; Wójcik, A.; Moszczynska, D.; Eisawi, K.; Prenger, K.; Presser, V.; et al. Wet-Chemical Etching and Delamination of MoAlB into Mbene and Its Outstanding Photocatalytic Performance. Adv. Funct. Mater. 2023, 33, 2308156. [Google Scholar] [CrossRef]
- Wu, T.; He, Q.; Liu, Z.; Shao, B.; Liang, Q.; Pan, Y.; Huang, J.; Peng, Z.; Liu, Y.; Zhao, C.; et al. Tube Wall Delamination Engineering Induces Photogenerated Carrier Separation to Achieve Photocatalytic Performance Improvement of Tubular G-C3N4. J. Hazard. Mater. 2022, 424, 127177. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Ge, G.; Zhao, Z. Fabrication of Tubular G-C3N4 with N-Defects and Extended Π-Conjugated System for Promoted Photocatalytic Hydrogen Production. ChemCatChem 2019, 11, 1534–1544. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, F.; Sun, H.; Shi, Y.; Shi, W. Well-Designed Three-Dimensional Hierarchical Hollow Tubular G-C3N4/ZnIn2S4 Nanosheets Heterostructure for Achieving Efficient Visible-Light Photocatalytic Hydrogen Evolution. J. Colloid Interface Sci. 2022, 607, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, C.; Zhang, X.; Wang, L.; Wang, W.; Meng, X. Self-Assembly Synthesis of Phosphorus-Doped Tubular G-C3N4/Ti3C2 Mxene Schottky Junction for Boosting Photocatalytic Hydrogen Evolution. Green Energy Environ. 2023, 8, 233–245. [Google Scholar] [CrossRef]
- Li, F.; Xiao, X.; Zhao, C.; Liu, J.; Li, Q.; Guo, C.; Tian, C.; Zhang, L.; Hu, J.; Jiang, B. TiO2-on-C3N4 Double-Shell Microtubes: In-Situ Fabricated Heterostructures toward Enhanced Photocatalytic Hydrogen Evolution. J. Colloid Interface Sci. 2020, 572, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Vequizo, J.J.M.; Hisatomi, T.; Rabeah, J.; Nakabayashi, M.; Wang, Z.; Xiao, Q.; Li, H.; Pan, Z.; Krause, M.; et al. Simultaneously Tuning the Defects and Surface Properties of Ta3N5 Nanoparticles by Mg–Zr Codoping for Significantly Accelerated Photocatalytic H2 Evolution. J. Am. Chem. Soc. 2021, 143, 10059–10064. [Google Scholar] [CrossRef] [PubMed]
- Dzade, N.Y. CO2 and H2O Coadsorption and Reaction on the Low-Index Surfaces of Tantalum Nitride: A First-Principles DFT-D3 Investigation. Catalysts 2020, 10, 1217. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, S.C.; Thaweesak, S.; Luo, B.; Wang, L.Z. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation. Engineering 2017, 3, 365–378. [Google Scholar] [CrossRef]
- Zhan, X.Q.; Zheng, Y.P.; Li, B.; Fang, Z.; Yang, H.L.; Zhang, H.T.; Xu, L.Y.; Shao, G.; Hou, H.L.; Yang, W.Y. Rationally Designed Ta3N5/ZnIn2S4 1D/2D Heterojunctions for Boosting Visible-Light-Driven Hydrogen Evolution. Chem. Eng. J. 2022, 431, 134053. [Google Scholar] [CrossRef]
- Xiao, C.; Dong, G.; Yao, T.; Han, K.; Dong, T.; Zhou, T. The Visible Light Photocatalytic Performance of G-C3N4 Is Regulated by the Brønsted Acid Site on the Mullite Surface. Appl. Surf. Sci. 2024, 654, 159453. [Google Scholar] [CrossRef]
- Tang, S.; Yang, S.; Chen, Y.; Yang, Y.; Li, Z.; Zi, L.; Liu, Y.; Wang, Y.; Li, Z.; Fu, Z.; et al. Ionothermally Synthesized S-Scheme Isotype Heterojunction of Carbon Nitride with Significantly Enhanced Photocatalytic Performance for Hydrogen Evolution and Carbon Dioxide Reduction. Carbon 2023, 201, 815–828. [Google Scholar] [CrossRef]
- Negro, P.; Cesano, F.; Damin, A.; Brescia, R.; Scarano, D. Porous G-C3N4-Based Nanoarchitectures by Playing with Sustainable Precursors: Role of Urea/Melamine Ratio on the Structure/Properties Relationship. J. Alloys Compd. 2024, 1002, 175053. [Google Scholar] [CrossRef]
- Zažímal, F.; Atri, S.; Plašienka, D.; Vrána, L.; Stýskalík, A.; Vlk, A.; Čaplovičová, M.; Šob, M.; Monfort, O.; Homola, T. Fast Plasma Nanomodification of Graphitic Carbon Nitride by Amide and Carboxyl Groups for Enhanced Sulfamethoxazole Degradation in Wastewater: Detailed Experimental and DFT Study. J. Mater. Chem. A 2025, 13, 13909–13923. [Google Scholar] [CrossRef]
- Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-Nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 1830–1834. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Ou, D.; Zheng, Y.; Li, B.; Xu, L.; Yang, H.; Yang, W.; Zhang, H.; Hou, H.; Yang, W. Boosted Photocatalytic Hydrogen Production over Two-Dimensional/Two-Dimensional Ta3N5/ReS2 Van Der Waals Heterojunctions. J. Colloid Interface Sci. 2023, 629, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, C.; Zheng, L.; Chen, F.; Qian, J.; Meng, X.; Chen, Z.; Zhong, S.; He, B. N3C-Defect-Tuned G-C3N4 Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance. Nanomaterials 2025, 15, 466. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Peng, J.; Deng, F.; Li, X.; Zou, J.; Zhang, Y.; Luo, X. Preferential Degradation of Ofloxacin on All-Organic Molecularly Imprinted PDI/G-C3N4 Photocatalyst Via Specific Molecular Recognition. Sep. Purif. Technol. 2025, 353, 128499. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Tayyab, M.; Wei, Z.; Zheng, X.; Shangguan, W.; Zhang, S.; Chen, S.; Meng, S. Regulating Electron-Hole Pairs of G-C3N4 Efficiently Separated and Fully Utilized for Photosynthesis of H2O2 under Visible Light. Chem. Eng. J. 2025, 509, 161409. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, P.; Chen, Y.; Zhou, Z.; Yang, H.; Hong, Y.; Li, F.; Ni, L.; Yan, Y.; Gregory, D.H. Construction of Stable Ta3N5/G-C3N4 Metal/Non-Metal Nitride Hybrids with Enhanced Visible-Light Photocatalysis. Appl. Surf. Sci. 2017, 391, 392–403. [Google Scholar] [CrossRef]
- Alaya, Y.; Chouchene, B.; Medjahdi, G.; Balan, L.; Bouguila, N.; Schneider, R. Heterostructured S-TiO2/G-C3N4 Photocatalysts with High Visible Light Photocatalytic Activity. Catalysts 2024, 14, 226. [Google Scholar] [CrossRef]
- Mao, S.; Yao, G.; Liu, P.; Liu, C.; Wu, Y.; Ding, Z.; Ding, C.; Xia, M.; Wang, F. Construction of an Enhanced Built-in Electric Field in S-Doped G-C3N4/NiCo2O4 for Boosting Peroxymonosulfate Activation. Chem. Eng. J. 2023, 470, 144250. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Shi, W.X.; Zhuang, G.L.; Zhao, Q.P.; Ren, J.; Zhang, P.; Yin, H.Q.; Lu, T.B.; Zhang, Z.M. W Single-Atom Catalyst for CH4 Photooxidation in Water Vapor. Adv. Mater. 2022, 34, 2204448. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Liu, T.; Dong, B.; Qi, Y.; Yuan, H.; Gao, J.; Yang, D.; Zhang, F. Flux-Assisted Synthesis of Prism-Like Octahedral Ta3N5 Single-Crystals with Controllable Facets for Promoted Photocatalytic H2 Evolution. Sol. RRL 2021, 5, 2000574. [Google Scholar] [CrossRef]
- Bharathkumar, S.; Mohan, S.; Alsaeedi, H.; Oh, T.H.; Vignesh, S.; Sundaramoorthy, A.; Valdes, H. Z-Scheme Driven Charge Transfer in G-C3N4/A-Fe2O3 Nanocomposites Enabling Photocatalytic Degradation of Crystal Violet and Chromium Reduction. Surf. Interfaces 2024, 54, 105299. [Google Scholar] [CrossRef]
- Liang, Y.-F.; Lu, J.-R.; Tian, S.-K.; Cui, W.-Q.; Liu, L. Pt Nanoclusters Modified Porous G-C3N4 Nanosheets to Significantly Enhance Hydrogen Production by Photocatalytic Water Reforming of Methanol. Chin. J. Chem. Eng. 2024, 66, 40–50. [Google Scholar] [CrossRef]
- Yu, C.; Yang, H.; Zhao, H.; Huang, X.; Liu, M.; Du, C.; Chen, R.; Feng, J.; Dong, S.; Sun, J.; et al. Simultaneous Hydrogen Production from Wastewater Degradation by Protonated Porous G-C3N4/BiVO4 Z-Scheme Composite Photocatalyst. Sep. Purif. Technol. 2024, 335, 126201. [Google Scholar] [CrossRef]
- Sun, Q.M.; Xu, J.J.; Tao, F.F.; Ye, W.; Zhou, C.; He, J.H.; Lu, J.M. Boosted Inner Surface Charge Transfer in Perovskite Nanodots@ Mesoporous Titania Frameworks for Efficient and Selective Photocatalytic CO2 Reduction to Methane. Angew. Chem. Int. Ed. 2022, 61, e202200872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, S.; Qin, H.; Zheng, Q.; Zhang, P.; Li, X.; Li, C.; Wang, T.; Li, N.; Zhang, S.; et al. Metal-Organic Framework-Derived Nitrogen-Doped Carbon-Coated Hollow Tubular In2O3/CdZnS Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Sci. China Mater. 2023, 66, 1042–1052. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, M.; Li, H.; Wang, Z.; Wang, Y. Multi-Channel Charge Transfer in Self-Supporting B-G-C3Nx/Bi2S3/CdS Dual S-Scheme Heterojunction toward Enhanced Photothermal-Photocatalytic Performance. Nano Energy 2024, 120, 109164. [Google Scholar] [CrossRef]
- Zhan, X.Q.; Zhang, H.T.; Hou, H.L.; Gao, F.M.; Wang, L.; Ou, D.L.; Li, B.; Xu, L.Y.; Yang, W.Y. Rationally Designed Ta3N5/ZnO Core-Shell Nanofibers for Significantly Boosts Photocatalytic Hydrogen Production. Appl. Surf. Sci. 2023, 611, 155788. [Google Scholar] [CrossRef]
- Zhang, J.D.; Zhang, R.Y.; Jia, X.W.; Li, J.M.; Sun, M.L.; Zhang, S.K.; Guo, Z.F.; Jiao, X.Y.; Liu, X.C.; Jin, Z.S.; et al. Template-Free Synthesis of Honeycomb-Structured Ta3N5 Foam Nanoplates with Expanded Light Absorption, Abundant Active Sites and Fast Charges Transport for Visible-Light-Driven H2 Evolution. New J. Chem. 2025, 49, 8485–8493. [Google Scholar] [CrossRef]
- Zhou, H.R.; Ke, J.; Wu, H.; Liu, J.; Xu, D.S.; Zou, X.J. Manganese Tungstate/Graphitic Carbon Nitride S-Scheme Heterojunction for Boosting Hydrogen Evolution and Mechanism Exploration. Mater. Today Energy 2022, 23, 100918. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, W.W.; Wang, G.C.; Zhao, Z.K. Poly-(Imidazolium-Methylene) Chloride Mediated Self-Assembly Strategy to Modulate Electronic Structure of Carbon Nitride for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Chemcatchem 2023, 15, e202201620. [Google Scholar] [CrossRef]
- Shao, X.X.; Zhao, X.F.; Li, K.P.; Sun, M.H.; Ji, X.P.; Lu, H.D.; Liu, Y.P. Preparation of WP2/G-C3N4 Composite Photocatalysts and Their Enhanced Photocatalytic Performance. Ionics 2025, 31, 4725–4737. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Jia, X.F.; Ma, Z.Y.; Zhang, J.Y. 2D/1D Z-Scheme WO3/G-C3N4 Photocatalytic Heterojunction with Enhanced Photo-Induced Charge-Carriers Separation. J. Phys. D. Appl. Phys. 2022, 55, 434005. [Google Scholar] [CrossRef]
- Wang, B.C.; Huang, L.L.; Peng, T.; Wang, R.; Jin, J.; Wang, H.W.; He, B.B.; Gong, Y.S. Attapulgite-Intercalated G-C3N4/ZnIn2S4 3D Hierarchical Z-Scheme Heterojunction for Boosting Photocatalytic Hydrogen Production. J. Colloid Interf. Sci. 2024, 675, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.G.; Jia, R.M.; Wang, C.J.; Guan, W.; Wang, P.; Zhang, L.; Gan, Z.X.; Dong, L.F.; Yu, L.Y.; Sui, L.A. High Efficiency Photocatalytic Hydrogen Evolution by Black Phosphorus Quantum Dots Decorated 1D G-C3N4 Nanotubes. Int. J. Hydrogon Energ. 2024, 95, 766–772. [Google Scholar] [CrossRef]
- Ullah, I.; Lu, X.J.; Chen, S.; Li, J.H.; Habib, S.; Murtaza, G.; Tofaz, T.; Xu, A.W. Electron-Deficient Boron-Doped G-C3N4 as an Efficient and Robust Photocatalyst for Visible-Light Driven Hydrogen Evolution from Water Splitting. Adv. Sustain. Syst. 2024, 8, 2400103. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, D.; Deng, C.K.; Zhong, J.B.; Dou, L.; Huang, S.T. Rationally Construction of Dy2O3/G-C3N4 Heterojunctions with Largely Enhanced Photocatalytic Hydrogen Evolution Activity. Mater. Res. Bull. 2024, 179, 112971. [Google Scholar] [CrossRef]
- Zhang, Y.; Luan, J.D.; Li, P.P.; Jiang, L.D.; Yan, H.B.; Liu, W.A.; Yan, Z. Carbon Doping and Bridging Oxygen Benefit for G-C3N4 to Photocatalytic H2 Production from Methanol/Water Splitting: Experiments and Theoretical Calculations. Carbon 2024, 228, 119430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Ba, G.; Bi, F.; Hu, H.; Ye, J.; Wang, D. Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production. Catalysts 2025, 15, 691. https://doi.org/10.3390/catal15070691
Yu J, Ba G, Bi F, Hu H, Ye J, Wang D. Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production. Catalysts. 2025; 15(7):691. https://doi.org/10.3390/catal15070691
Chicago/Turabian StyleYu, Junbo, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye, and Defa Wang. 2025. "Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production" Catalysts 15, no. 7: 691. https://doi.org/10.3390/catal15070691
APA StyleYu, J., Ba, G., Bi, F., Hu, H., Ye, J., & Wang, D. (2025). Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production. Catalysts, 15(7), 691. https://doi.org/10.3390/catal15070691