Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = analytical kinetic model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 872 KiB  
Article
Effect of Monomer Mixture Composition on TiCl4-Al(i-C4H9)3 Catalytic System Activity in Butadiene–Isoprene Copolymerization: A Theoretical Study
by Konstantin A. Tereshchenko, Rustem T. Ismagilov, Nikolai V. Ulitin, Yana L. Lyulinskaya and Alexander S. Novikov
Computation 2025, 13(8), 184; https://doi.org/10.3390/computation13080184 (registering DOI) - 1 Aug 2025
Abstract
Divinylisoprene rubber, a copolymer of butadiene and isoprene, is used as raw material for rubber technical products, combining isoprene rubber’s elasticity and butadiene rubber’s wear resistance. These properties depend quantitatively on the copolymer composition, which depends on the kinetics of its synthesis. This [...] Read more.
Divinylisoprene rubber, a copolymer of butadiene and isoprene, is used as raw material for rubber technical products, combining isoprene rubber’s elasticity and butadiene rubber’s wear resistance. These properties depend quantitatively on the copolymer composition, which depends on the kinetics of its synthesis. This work aims to theoretically describe how the monomer mixture composition in the butadiene–isoprene copolymerization affects the activity of the TiCl4–Al(i-C4H9)3 catalytic system (expressed by active sites concentration) via kinetic modeling. This enables development of a reliable kinetic model for divinylisoprene rubber synthesis, predicting reaction rate, molecular weight, and composition, applicable to reactor design and process intensification. Active sites concentrations were calculated from experimental copolymerization rates and known chain propagation constants for various monomer compositions. Kinetic equations for active sites formation were based on mass-action law and Langmuir monomolecular adsorption theory. An analytical equation relating active sites concentration to monomer composition was derived, analyzed, and optimized with experimental data. The results show that monomer composition’s influence on active sites concentration is well described by a two-step kinetic model (physical adsorption followed by Ti–C bond formation), accounting for competitive adsorption: isoprene adsorbs more readily, while butadiene forms more stable active sites. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
27 pages, 2690 KiB  
Article
Adsorption of Methylene Blue on Metakaolin-Based Geopolymers: A Kinetic and Thermodynamic Investigation
by Maryam Hmoudah, Rosanna Paparo, Michela De Luca, Michele Emanuele Fortunato, Olimpia Tammaro, Serena Esposito, Riccardo Tesser, Martino Di Serio, Claudio Ferone, Giuseppina Roviello, Oreste Tarallo and Vincenzo Russo
ChemEngineering 2025, 9(4), 79; https://doi.org/10.3390/chemengineering9040079 - 25 Jul 2025
Viewed by 153
Abstract
Metakaolin-based geopolymers with different molar ratios of Si/Al were synthesized and utilized as an efficient adsorbent for the removal of methylene blue (MB) as a model cationic dye from aqueous solution. Various analytical techniques were employed to characterize the synthesized geopolymers. The influence [...] Read more.
Metakaolin-based geopolymers with different molar ratios of Si/Al were synthesized and utilized as an efficient adsorbent for the removal of methylene blue (MB) as a model cationic dye from aqueous solution. Various analytical techniques were employed to characterize the synthesized geopolymers. The influence of the main operation conditions on the adsorption kinetics of MB onto the geopolymer was examined under various operating conditions. Results showed a significant maximum MB adsorption capacity at the temperature of 30 °C for all four types of geopolymers studied (designated as A, B, C, and D) up to 35.3, 23.6, 25.5, and 19.0 mg g−1, respectively. The corresponding order of Si/Al ratio was A < C < B < D. Adsorption kinetics was so fast and reached equilibrium in 10 min, and the experimental results were described using the adsorption dynamic intraparticle model (ADIM). The equilibrium data for MB removal was in agreement with the Langmuir isotherm. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 207
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 261
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 410
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

17 pages, 1168 KiB  
Article
Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications
by Wael W. Mohammed, Mst. Munny Khatun, Mohamed S. Algolam, Rabeb Sidaoui and M. Ali Akbar
Fractal Fract. 2025, 9(7), 438; https://doi.org/10.3390/fractalfract9070438 - 3 Jul 2025
Cited by 1 | Viewed by 284
Abstract
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/ [...] Read more.
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/G, 1/G)-expansion approach, we derive different categories of exact solutions, like hyperbolic, trigonometric, and rational functions. The beta fractional derivative is used here to generalize the classical idea of the derivative, which preserves important principles. The derived solutions with broader nonlinear wave structures are periodic waves, breathers, peakons, W-shaped solitons, and singular solitons, which enhance our understanding of nonlinear wave dynamics. In relation to these results, the findings are described by showing the solitons’ physical behaviors, their stabilities, and dispersions under fractional parameters in the form of contour plots and 2D and 3D graphs. Comparisons with earlier studies underscore the originality and consistency of the (G′/G, 1/G)-expansion approach in addressing fractional-order evolution equations. It contributes new solutions to analytical problems of fractional nonlinear integrable systems and helps understand the systems’ dynamic behavior in a wider scope of applications. Full article
Show Figures

Figure 1

20 pages, 17822 KiB  
Article
A Lattice Boltzmann BGK Model with an Amending Function for Two-Dimensional Second-Order Nonlinear Partial Differential Equations
by Xiaohua Bi, Junbo Lei, Demei Li, Lindong Lai, Huilin Lai and Zhipeng Liu
Entropy 2025, 27(7), 717; https://doi.org/10.3390/e27070717 - 2 Jul 2025
Viewed by 263
Abstract
A mesoscopic lattice Boltzmann method based on the BGK model is proposed to solve a class of two-dimensional second-order nonlinear partial differential equations by incorporating an amending function. The model provides an efficient and stable framework for simulating initial value problems of second-order [...] Read more.
A mesoscopic lattice Boltzmann method based on the BGK model is proposed to solve a class of two-dimensional second-order nonlinear partial differential equations by incorporating an amending function. The model provides an efficient and stable framework for simulating initial value problems of second-order nonlinear partial differential equations and is adaptable to various nonlinear systems, including strongly nonlinear cases. The numerical characteristics and evolution patterns of these nonlinear equations are systematically investigated. A D2Q4 lattice model is employed, and the kinetic moment constraints for both local equilibrium and correction distribution functions are derived in the four velocity directions. Explicit analytical expressions for these distribution functions are presented. The model is verified to recover the target macroscopic equations in the continuous limit via Chapman–Enskog analysis. Numerical experiments using exact solutions are performed to assess the model’s accuracy and stability. The results show excellent agreement with exact solutions and demonstrate the model’s robustness in capturing nonlinear dynamics. Full article
(This article belongs to the Special Issue Mesoscopic Fluid Mechanics)
Show Figures

Figure 1

19 pages, 1286 KiB  
Article
Adsorption–Desorption at Anomalous Diffusion: Fractional Calculus Approach
by Ivan Bazhlekov and Emilia Bazhlekova
Fractal Fract. 2025, 9(7), 408; https://doi.org/10.3390/fractalfract9070408 - 24 Jun 2025
Viewed by 583
Abstract
A mathematical model of the anomalous diffusion of surfactant and the process of adsorption–desorption on an interface is analyzed using a fractional calculus approach. The model is based on time-fractional partial differential equations in the bulk phases and the corresponding time-fractional description of [...] Read more.
A mathematical model of the anomalous diffusion of surfactant and the process of adsorption–desorption on an interface is analyzed using a fractional calculus approach. The model is based on time-fractional partial differential equations in the bulk phases and the corresponding time-fractional description of the flux bulk–interface. The general case, when the surfactant is soluble in both phases, is considered under the assumption that the adsorption–desorption process is diffusion-controlled. Some of the most popular kinetic models of Henry, Langmuir, and Volmer are considered. Applying the Laplace transform, the partial differential model is transformed into a single multi-term time-fractional nonlinear ordinary differential equation for the surfactant concentration on the interface. Based on existing analytical solutions of linear time-fractional differential equations, the exact solution in the case of the Henry model is derived in terms of multinomial Mittag–Leffler functions, and its asymptotic behavior is studied. Further, the fractional differential model in the general nonlinear case is rewritten as an integral equation, which is a generalization of the well-known Ward–Tordai equation. For computer simulations, based on the obtained integral equation, a predictor–corrector numerical technique is developed. Numerical results are presented and analyzed. Full article
Show Figures

Figure 1

25 pages, 2162 KiB  
Article
Adsorption of Butylparaben and Methylene Blue from Aqueous Solution Using Activated Carbon Derived from Oak Bark
by Dorota Paluch, Robert Wolski, Aleksandra Bazan-Wozniak and Robert Pietrzak
Materials 2025, 18(13), 2984; https://doi.org/10.3390/ma18132984 - 24 Jun 2025
Viewed by 344
Abstract
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min. [...] Read more.
This study presents the production of activated carbon through the direct physical activation of oak bark using carbon (IV) oxide. The activation process was conducted at three distinct temperatures of 700 °C, 800 °C, and 900 °C. The activation time was 60 min. A comprehensive series of analytical procedures was performed on the resultant adsorbents. These included elemental analysis, determination of textural parameters, Boehm titration, pH determination of aqueous extracts, pHpzC0, assessment of ash content, and elemental and XPS analysis. Subsequently, adsorption tests for butyl paraben and methylene blue were carried out on the materials obtained. The total surface area of the sorbents ranged from 247 m2/g to 696 m2/g. The acid-based properties of the samples tested were examined, and the results indicated that the sorbents exhibited a distinct alkaline surface character. The sorption capacities of the tested samples for butylparaben ranged between 20 and 154 mg/g, while the capacities for methylene blue varied between 13 and 224 mg/g. The constants of the Langmuir and Freundlich models were determined for each of the impurities, as well as the thermodynamic parameters. The present study investigates the influence of contact time between adsorbent and adsorbate, in addition to the kinetics of the adsorption processes. The activated carbon samples obtained demonstrated satisfactory sorption capacities, with the material obtained at 900 °C exhibiting the best sorption capacities. Full article
Show Figures

Graphical abstract

28 pages, 6777 KiB  
Article
Upgrading/Deacidification of Biofuels (Gasoline, Kerosene, and Diesel-like Hydrocarbons) by Adsorption Using Activated Red-Mud-Based Adsorbents
by Nélio Teixeira Machado, Karen Marcela Barros da Costa, Silvio Alex Pereira da Mota, Luiz Eduardo Pizarro Borges and Andréia de Andrade Mancio da Mota
Energies 2025, 18(13), 3250; https://doi.org/10.3390/en18133250 - 21 Jun 2025
Viewed by 280
Abstract
This study explored the adsorption of carboxylic acids, especially free fatty acids (FFAs), present in biofuel (distilled fractions of bio-oil such as gasoline-like hydrocarbons, kerosene-like hydrocarbons, and diesel-like hydrocarbons) using red-mud-based adsorbents. The red mud was thermally activated at 40 °C and 600 [...] Read more.
This study explored the adsorption of carboxylic acids, especially free fatty acids (FFAs), present in biofuel (distilled fractions of bio-oil such as gasoline-like hydrocarbons, kerosene-like hydrocarbons, and diesel-like hydrocarbons) using red-mud-based adsorbents. The red mud was thermally activated at 40 °C and 600 °C and chemically activated with 0.25M, 1M, and 2M HCl. Analytical techniques were used to characterize the adsorbents’ properties. At the same time, the study examined factors like feed type, adsorbents, FFA contents, adsorbent percentage, activation temperature, acid solution concentration, and contact time to assess adsorption efficiency. The characterization results indicated that chemical activation with 0.25M HCl significantly increased the surface area to 84.3290 m2/g, surpassing that of the thermally activated samples (35.2450 m2/g at 400 °C). Adsorption experiments demonstrated that all chemically activated samples, with 5% adsorbent, adsorbed over 2000 mg of FFAs per gram of adsorbent, with CARM-1M HCl achieving 100% removal of acids from gasoline-like hydrocarbons. Kinetic modeling showed that the pseudo-second-order model best represented the adsorption data, as evidenced by high R2 values and close agreement between the experimental and calculated qe values. Therefore, adsorption with chemically activated red mud efficiently deacidifies biofuels, providing a cost-effective and promising approach for their upgrading. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Waste-to-Energy Technologies)
Show Figures

Figure 1

23 pages, 4622 KiB  
Article
A Rapid and Complete Photodegradation of Doxycycline Using rGO@CuO Nanocomposite Under Visible and Direct Sunlight: Mechanistic Insights and Real-Time Applicability
by Panchraj Verma, Subrata Das, Shubham Raj and Raphaël Schneider
Nanomaterials 2025, 15(13), 953; https://doi.org/10.3390/nano15130953 - 20 Jun 2025
Viewed by 465
Abstract
In this study, a simple and efficient hydrothermal strategy was developed to modify reduced graphene oxide (rGO) with copper (II) oxide (CuO) nanoparticles by varying the weight ratio of rGO relative to CuO (rGO@CuO1:1, rGO@CuO1:2, and rGO@CuO2:1). [...] Read more.
In this study, a simple and efficient hydrothermal strategy was developed to modify reduced graphene oxide (rGO) with copper (II) oxide (CuO) nanoparticles by varying the weight ratio of rGO relative to CuO (rGO@CuO1:1, rGO@CuO1:2, and rGO@CuO2:1). The obtained materials were further characterized using analytical tools. Photocatalytic performance was assessed using adsorption–photocatalysis experiments under a household LED light source (10 W, λ > 400 nm), and the degree of degradation of doxycycline (DOX) was evaluated using UV-Vis spectrophotometer. The highest efficiency of 100% was achieved with a DOX concentration of 70 ppm, rGO@CuO1:1 dosage of 1 mg/mL, and pH 7 within 30 min of irradiation. The degradation kinetics followed the pseudo-first-order model (R2 ~0.99) and the Langmuir adsorption isotherm, indicating that DOX on the surface is governed by a dynamic equilibrium between adsorption and degradation rates. Furthermore, efficacy was tested using real water samples, and the recyclability of the catalyst was evaluated in up to five cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

24 pages, 2772 KiB  
Article
Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design
by Omar Awad, AbdulRahman Ghannoum and Patricia Nieva
Fibers 2025, 13(6), 81; https://doi.org/10.3390/fib13060081 - 17 Jun 2025
Viewed by 537
Abstract
This work presents a novel and comprehensive framework for optimizing fiber optic evanescent wave (FOEW) localized surface plasmon resonance (LSPR) sensors by investigating the unique interaction between evanescent waves and plasmonic nanoparticles. Unlike propagating light, the evanescent wave is a localized, non-propagating field [...] Read more.
This work presents a novel and comprehensive framework for optimizing fiber optic evanescent wave (FOEW) localized surface plasmon resonance (LSPR) sensors by investigating the unique interaction between evanescent waves and plasmonic nanoparticles. Unlike propagating light, the evanescent wave is a localized, non-propagating field that interacts exclusively with absorbing media near the fiber surface. This characteristic highlights the importance of prioritizing nanoparticle absorption over total extinction in FOEW sensor design. The optical response of silver nanoparticles was modeled across a size range of 10–100 nm, showing that absorption increases with particle number. Among the sizes tested, 30 nm silver nanoparticles exhibited the highest absorption efficiency, which was confirmed experimentally. An analytical adsorption kinetics model based on diffusion transport further predicted that smaller nanoparticles yield higher surface coverage, a result validated through atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging. Refractive index (RI) sensitivity tests conducted on sensors fabricated with 10 nm, 20 nm, and 30 nm silver nanoparticles revealed that while smaller nanoparticles produced higher initial absorption due to greater surface density, the 30 nm particles ultimately provided superior RI sensitivity due to their enhanced absorption efficiency. These findings underscore the significance of absorption-centered nanoparticle design in maximizing FOEW LSPR sensor performance. Full article
Show Figures

Figure 1

24 pages, 4934 KiB  
Article
Impact of Microdosimetric Modeling on Computation of Relative Biological Effectiveness for Carbon Ion Radiotherapy
by Shannon Hartzell, Keith M. Furutani, Alessio Parisi, Tatsuhiko Sato, Yuki Kase, Christian Deglow, Thomas Friedrich and Chris J. Beltran
Radiation 2025, 5(2), 21; https://doi.org/10.3390/radiation5020021 - 12 Jun 2025
Viewed by 1172
Abstract
Microdosimetry plays a critical role in particle therapy by quantifying energy deposition within microscopic domains to assess biological effects. This study evaluates the influence of different microdosimetric functions (MFs) and domain geometries (DGs) on relative biological effectiveness (RBE) predictions in carbon ion radiotherapy. [...] Read more.
Microdosimetry plays a critical role in particle therapy by quantifying energy deposition within microscopic domains to assess biological effects. This study evaluates the influence of different microdosimetric functions (MFs) and domain geometries (DGs) on relative biological effectiveness (RBE) predictions in carbon ion radiotherapy. Specifically, we compare the analytical microdosimetric function (AMF), calculated for spherical domains and implemented in PHITS, with the Kiefer–Chatterjee (KC) track structure model, which is conventionally applied to cylindrical geometries. To enable a direct comparison, we also introduce a novel implementation of the KC model for spherical domains. Using both models, specific energy distributions were calculated across a range of domain sizes and geometries. These distributions were input into the modified microdosimetric kinetic model (mMKM) to calculate RBE for the HSG cell line and compared against published in vitro data. The results show that both microdosimetric function and domain geometry significantly affect microdosimetric spectra and the resulting RBE, with deviations exceeding 10% when fixed mMKM parameters are used. Parameter optimization within the mMKM enables alignment across models. Our findings emphasize that microdosimetric function and domain geometry selection must be explicitly accounted for in microdosimetry-based RBE modeling, and that model parameters must be tuned accordingly to ensure consistent and biologically accurate predictions. Full article
Show Figures

Figure 1

17 pages, 733 KiB  
Review
The Temporal Structure of the Running Cycle, an Essential Element in the Analysis: A Critical Review
by Felipe Inostroza-Ríos, Pablo Merino-Muñoz, Celso Sánchez-Ramírez, Alejandro Bustamante Garrido, Jorge Pérez-Contreras, Jorge Cancino-Jimenez, David Arriagada-Tarifeño, Esteban Aedo-Muñoz and Ciro José Brito
Biomechanics 2025, 5(2), 40; https://doi.org/10.3390/biomechanics5020040 - 12 Jun 2025
Viewed by 531
Abstract
The running cycle is distinguished from the gait cycle by the presence of a flight phase and distinct biomechanical characteristics. Despite existing frameworks for the temporal segmentation of running, these models remain underutilized in comprehensive biomechanical analyses, particularly for delineating phases, subphases, and [...] Read more.
The running cycle is distinguished from the gait cycle by the presence of a flight phase and distinct biomechanical characteristics. Despite existing frameworks for the temporal segmentation of running, these models remain underutilized in comprehensive biomechanical analyses, particularly for delineating phases, subphases, and key events. This study aims to provide a review of historical and contemporary temporal models of the running cycle and to introduce a unified structure designed to enhance analytical precision. The proposed framework divides the running cycle into two primary phases: (a) contact (subdivided into braking and propulsion subphases) and (b) flight, together with three critical events: (1) initial contact, (2) transition of braking–propulsion, (3) toe-off. While leg swing is not considered a phase in this framework due to temporal overlap with other phases, its recognized importance in running mechanics warrants its integrated analysis under the proposed temporal phase delineation. Additionally, methodologies for identifying these events through dynamometry and motion capture are evaluated, emphasizing their role in contextualizing kinetic and kinematic data. By integrating this temporal structure, the study aims to standardize biomechanical assessments of running technique, fostering more consistent comparisons across studies. Such integration has the potential to not only refine interpretations of running mechanics but also to enable practical advancements in athletic training, injury mitigation, and performance optimization. Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
Show Figures

Figure 1

20 pages, 1140 KiB  
Article
Optimization of Autonomous Vehicle Safe Passage at Intersections Based on Crossing Risk Degree
by Jiajun Shen, Yu Wang, Haoyu Wang and Chunxiao Li
Symmetry 2025, 17(6), 893; https://doi.org/10.3390/sym17060893 - 6 Jun 2025
Viewed by 657
Abstract
In the context of autonomous driving, ensuring safe passage at intersections is of significant importance. An effective method is necessary to optimize the passage rights of autonomous vehicles at intersections to enhance traffic safety and operational efficiency. This paper proposes an analytical model [...] Read more.
In the context of autonomous driving, ensuring safe passage at intersections is of significant importance. An effective method is necessary to optimize the passage rights of autonomous vehicles at intersections to enhance traffic safety and operational efficiency. This paper proposes an analytical model for assigning the right-of-way to autonomous vehicles approaching intersections from different directions. Assuming that fully autonomous vehicles equipped with advanced Vehicle-to-Everything (V2X) communication and real-time data processing can utilize gaps to proceed at unsignalized intersections in the future, the Crossing Risk Degree (CRD) indicator is introduced for safety assessment. A higher CRD value indicates a higher crossing risk. CRD is defined as the product of the kinetic energy loss from collisions between vehicles in the priority and conflicting fleets, and the probability of conflict between these two fleets. By comparing CRD values, the passage priority of vehicles at intersection entrances can be determined, ensuring efficient passage and reduced conflict risks. SUMO microsimulation modeling is employed to compare the proposed traffic optimization method with fixed signal control strategies. The simulation results indicate that under a traffic demand of 1200 vehicles per hour, the proposed method reduces the average delay per entry approach by approximately 20 s and decreases fuel consumption by about 50% compared to fixed-time signal control strategies. In addition, carbon emissions are significantly reduced. The findings provide critical insights for developing intersection safety management policies, including the establishment of CRD-based priority systems and real-time traffic monitoring frameworks to enhance urban traffic safety, symmetry, and efficiency. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Back to TopTop