Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications
Abstract
1. Introduction
2. Outline of the Method
3. Mathematical Analysis and Solutions
4. Results and Discussion
5. Comparison
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosmann-Schwarzbach, Y.; Grammaticos, B.; Tamizhmani, K.M. Integrability of Nonlinear Systems; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 495. [Google Scholar]
- Scott, A.C.; Chu, F.Y.; McLaughlin, D.W. The soliton: A new concept in applied science. Proc. IEEE 1973, 61, 1443–1483. [Google Scholar] [CrossRef]
- Nakazawa, M.; Kubota, H.; Suzuki, K.; Yamada, E.; Sahara, A. Recent progress in soliton transmission technology. Chaos Interdiscip. J. Nonlinear Sci. 2000, 10, 486–514. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.; Veerakumar, V. Propagation of electromagnetic soliton in antiferromagnetic medium. Phys. Lett. A 2002, 302, 77–86. [Google Scholar] [CrossRef]
- Khalique, C.M.; Adeyemo, O.D. Soliton solutions, travelling wave solutions and conserved quantities for a three-dimensional soliton equation in plasma physics. Commun. Theor. Phys. 2021, 73, 125003. [Google Scholar] [CrossRef]
- Khusnutdinova, K.R.; Stepanyants, Y.A.; Tranter, M.R. Soliton solutions to the fifth-order Korteweg-de Vries equation and their applications to surface and internal water waves. Phys. Fluids 2018, 30, 022104. [Google Scholar] [CrossRef]
- Sadegh Amiri, I.; Alavi, S.E.; Mahdaliza Idrus, S.; Sadegh Amiri, I.; Alavi, S.E.; Mahdaliza Idrus, S. Introduction of fiber waveguide and soliton signals used to enhance the communication security. Soliton Coding Secur. Opt. Commun. Link 2015, 1–16. [Google Scholar]
- Geesink, J.H.; Meijer, D.K.F. Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize or destabilize living cells. Electromagn. Biol. Med. 2017, 36, 357–378. [Google Scholar] [CrossRef]
- Adamski, A. Soliton perception in the human biological system. Adv. Tissue Eng. Regen. Med. 2020, 6, 9–13. [Google Scholar]
- Alam, N.; Belgacem, F.B.M. Microtubules nonlinear models dynamics investigations through the exp (−ϕ(ξ))-expansion method implementation. Mathematics 2016, 4, 6. [Google Scholar] [CrossRef]
- Samir, I.; Ahmed, H.M.; Rabie, W.; Abbas, W.; Mostafa, O. Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods. AIMS Math. 2025, 10, 3392–3407. [Google Scholar] [CrossRef]
- Behera, S.; Aljahdaly, N.H.; Virdi, J.P.S. On the modified (G′/G2)-expansion method for finding some analytical solutions of the traveling waves. J. Ocean. Eng. Sci. 2022, 7, 313–320. [Google Scholar] [CrossRef]
- Behera, S.; Behera, D. Nonlinear wave dynamics of (1+1)-dimensional conformable coupled nonlinear Higgs equation using modified (G′/G2)-expansion method. Phys. Scr. 2025, in press. [Google Scholar] [CrossRef]
- Bulut, H.A.S.A.N.; Ismael, H.F. Exploring new features for the perturbed Chen-Lee-Liu model via (m+G′/G)-expansion method. Proceeding Inst. Math. Mech. Natl. Acad. Sci. Azerbaijan 2022, 48, 164–173. [Google Scholar]
- Bibi, A.; Shakeel, M.; Khan, D.; Hussain, S.; Chou, D. Study of solitary and kink waves, stability analysis, and fractional effect in magnetized plasma. Results Phys. 2023, 44, 106166. [Google Scholar] [CrossRef]
- Mamun, A.A.; Lu, C.; Ananna, S.N.; Uddin, M.M. Dynamical behavior of water wave phenomena for the 3D fractional WBBM equations using rational sine-Gordon expansion method. Sci. Rep. 2024, 14, 6455. [Google Scholar] [CrossRef] [PubMed]
- Kemaloğlu, B.; Yel, G.; Bulut, H. An application of the rational sine-Gordon method to the Hirota equation. Opt. Quantum Electron. 2023, 55, 658. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, H. An extended Riccati equation method to find new solitary wave solutions of the Burgers-Fisher equation. Open J. Appl. Sci. 2023, 13, 1418–1432. [Google Scholar] [CrossRef]
- Kong, C.; Wang, D.; Song, L.; Zhang, H. New exact solutions to MKDV-Burgers equation and (2+1)-dimensional dispersive long wave equation via extended Riccati equation method. Chaos Solitons Fractals 2009, 39, 697–706. [Google Scholar] [CrossRef]
- Ren, J.; Ilhan, O.A.; Bulut, H.; Manafian, J. Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation. J. Geom. Phys. 2021, 164, 104159. [Google Scholar] [CrossRef]
- Wang, K.J.; Zou, B.R.; Zhu, H.W.; Li, S.; Li, G. Phase portrait, bifurcation and chaotic analysis, variational principle, Hamiltonian, novel solitary, and periodic wave solutions of the new extended Korteweg-de Vries-type equation. Math. Methods Appl. Sci. 2025, in press. [Google Scholar] [CrossRef]
- Kaur, B.; Gupta, R.K. Dispersion analysis and improved F-expansion method for space-time fractional differential equations. Nonlinear Dyn. 2019, 96, 837–852. [Google Scholar] [CrossRef]
- Islam, M.S.; Khan, K.; Akbar, M.A. Exact travelling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation through the improved F-expansion method with Riccati equation. Int. J. Comput. Sci. Math. 2017, 8, 61–72. [Google Scholar] [CrossRef]
- Sharif, N.; Alam, M.S.; Molla, H.U. Dynamics of nonlinear pendulum equations: Modified homotopy perturbation method. J. Low Freq. Noise Vib. Act. Control. 2025, in press. [Google Scholar] [CrossRef]
- Alaje, A.I.; Olayiwola, M.O.; Adedokun, K.A.; Adedeji, J.A.; Oladapo, A.O. Modified homotopy perturbation method and its application to analytical solitons of fractional-order Korteweg-de Vries equation. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 139. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Rabie, W.B. Structure of optical solitons in magneto-optic waveguides with dual-power law nonlinearity using modified extended direct algebraic method. Opt. Quantum Electron. 2021, 53, 438. [Google Scholar] [CrossRef]
- Ahmed, K.K.; Badra, N.M.; Ahmed, H.M.; Rabie, W.B. Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear Schrödinger equation by modified extended direct algebraic method. J. Opt. 2024, in press. [Google Scholar] [CrossRef]
- Akrami, M.H.; Poya, A.; Zirak, M.A. Exact analytical solution of tempered fractional heat-like (diffusion) equations by the modified variational iteration method. J. Mahani Math. Res. Cent. 2024, 13, 571–593. [Google Scholar]
- Ahmad, H.; Khan, T.A.; Stanimirović, P.S.; Chu, Y.M.; Ahmad, I. Modified Variational Iteration Algorithm-II: Convergence and Applications to Diffusion Models. Complexity 2020, 2020, 8841718. [Google Scholar] [CrossRef]
- Murad, M.A.S. Optical solutions with Kudryashov’s arbitrary type of generalized non-local nonlinearity and refractive index via the new Kudryashov approach. Opt. Quantum Electron. 2024, 56, 999. [Google Scholar] [CrossRef]
- Murad, M.A.S. Analyzing the time-fractional (3+1)-dimensional nonlinear Schrödinger equation: A new Kudryashov approach and optical solutions. Int. J. Comput. Math. 2024, 101, 524–537. [Google Scholar] [CrossRef]
- Faridi, W.A.; Bakar, M.A.; Riaz, M.B.; Myrzakulova, Z.; Myrzakulov, R.; Mostafa, A.M. Exploring the optical soliton solutions of Heisenberg ferromagnet-type of Akbota equation arising in surface geometry by explicit approach. Opt. Quantum Electron. 2024, 56, 1046. [Google Scholar] [CrossRef]
- Sirisubtawee, S.; Koonprasert, S. Exact traveling wave solutions of certain nonlinear partial differential equations using the (G′/G2)-expansion method. Adv. Math. Phys. 2018, 2018, 7628651. [Google Scholar] [CrossRef]
- Ali, A.; Nigar, A.; Nadeem, M.; Jat Baloch, M.Y.; Farooq, A.; Alrefaei, A.F.; Hussain, R. Complex solutions for nonlinear fractional partial differential equations via the fractional conformable residual power series technique and modified auxiliary equation method. Front. Phys. 2023, 11, 1232828. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Arshed, S.; Latif, R.; Inc, M.; Alzaidi, A.S. Exact traveling wave solutions of (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff equation using extended trial equation method and modified auxiliary equation method. Opt. Quantum Electron. 2024, 56, 424. [Google Scholar] [CrossRef]
- Hossain, A.K.S.; Islam, M.K.; Akter, H.; Akbar, M.A. Exact and soliton solutions of nonlinear evolution equations in mathematical physics using the generalized (G′/G)-expansion approach. Phys. Scr. 2024, 100, 015269. [Google Scholar] [CrossRef]
- Telezhko, I.; Dengaev, A.; Iarkhamova, A.; Revyakina, E.; Kolcova, N. On analytical solutions of the ZK equation and related equations by using the generalized (G′/G)-expansion method. Comput. Methods Differ. Equ. 2024, 13, 258–270. [Google Scholar]
- Akbar, M.A.; Khatun, M.M. Optical soliton solutions to the space-time fractional perturbed Schrödinger equation in communication engineering. Opt. Quantum Electron. 2023, 55, 645. [Google Scholar] [CrossRef]
- Arshed, S.; Akram, G.; Sadaf, M.; Latif, R.; Ahmad, H. Investigation of (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff equation by generalized Kudryashov method and two variable (G′/G, 1/G)-expansion method. Opt. Quantum Electron. 2024, 56, 747. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Hietarinta, J. Introduction to the Hirota bilinear method. In Integrability of Nonlinear Systems, Proceedings of the CIMPA School Pondicherry University, India, 8–26 January 1996; Springer: Berlin/Heidelberg, Germany, 2007; pp. 95–103. [Google Scholar]
- Hatipoğlu, V.F. A numerical algorithm for the solution of nonlinear fractional differential equations via beta-derivatives. Math. Methods Appl. Sci. 2019, 42, 5258–5265. [Google Scholar] [CrossRef]
- Atangana, A.; Alqahtani, R.T. Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative. Entropy 2016, 18, 40. [Google Scholar] [CrossRef]
- Kiskinov, H.; Zahariev, A. On fractional systems with Riemann-Liouville derivatives and distributed delays-choice of initial conditions, existence and uniqueness of the solutions. Eur. Phys. J. Spec. Top. 2017, 226, 3473–3487. [Google Scholar] [CrossRef]
- Tuan, N.H.; Mohammadi, H.; Rezapour, S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 2020, 140, 110107. [Google Scholar] [CrossRef]
- Atici, F.M.; Chang, S.; Jonnalagadda, J. Grünwald-Letnikov fractional operators: From past to present. Fract. Differ. Calc. 2021, 11, 147–159. [Google Scholar]
- Kajouni, A.; Chafiki, A.; Hilal, K.; Oukessou, M. A new conformable fractional derivative and applications. Int. J. Differ. Equ. 2021, 2021, 6245435. [Google Scholar] [CrossRef]
- Batool, F.; Suleman, M.S.; Demirbilek, U.; Rezazadeh, H.; Khedher, K.M.; Alsulamy, S.; Ahmad, H. Studying the impacts of M-fractional and beta derivatives on the nonlinear fractional model. Opt. Quantum Electron. 2024, 56, 164. [Google Scholar] [CrossRef]
- Atangana, A.; Alkahtani, B.S.T. Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter: Beta-Derivative. Complexity 2016, 21, 442–451. [Google Scholar] [CrossRef]
- Tzitzéica, M.G. Sur une nouvelle classe de surfaces. Rend. Circ. Mat. Palermo (1884–1940) 1908, 25, 180–187. [Google Scholar] [CrossRef]
- Abazari, R. The (G′/G)-expansion method for Tzitzéica type nonlinear evolution equations. Math. Comput. Model. 2010, 52, 1834–1845. [Google Scholar] [CrossRef]
- Chou, D.; Ur Rehman, H.; Amer, A.; Amer, A. New solitary wave solutions of generalized fractional Tzitzéica-type evolution equations using Sardar sub-equation method. Opt. Quantum Electron. 2023, 55, 1148. [Google Scholar] [CrossRef]
- Babalic, C.N.; Constantinescu, R.; Gerdjikov, V.S. On the soliton solutions of a family of Tzitzeica equations. J. Geom. Symmetry Phys. 2015, 37, 1–24. [Google Scholar]
- Ghanbari, B.; Inc, M.; Rada, L. Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 2019, 9, 568–589. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z. Optical soliton solutions and dynamic behavior analysis of generalized nonlinear fractional Tzitzéica-type equation. Results Phys. 2023, 52, 106815. [Google Scholar] [CrossRef]
- Manafian, J.; Lakestani, M. Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics: Dispersive dark optical soliton with Tzitzéica. Opt. Quantum Electron. 2016, 48, 1–32. [Google Scholar] [CrossRef]
- Rao, Y.; Zafar, A.; Korkmaz, A.; Fahad, A.; Qureshi, M.I. On Tzitéeica type nonlinear equations for multiple soliton solutions in nonlinear optics. AIMS Math. 2020, 5, 6580–6593. [Google Scholar] [CrossRef]
- Zafar, A.; Rezazadeh, H.; Reazzaq, W.; Bekir, A. The simplest equation approach for solving non-linear Tzitzéica type equations in non-linear optics. Mod. Phys. Lett. B 2021, 35, 2150132. [Google Scholar] [CrossRef]
- Aydemir, T. Traveling-wave solution of the Tzitzéica-type equations by using the unified method. Theor. Math. Phys. 2023, 216, 944–960. [Google Scholar] [CrossRef]
The Solution Obtained in This Study | Solutions of [46] |
---|---|
Solution
is , with , and . | Solution
of this article is , where , and . |
Solution
is , where , and . | Solution
of this article is , Here, , and . |
The Solution Obtained in This Study | Solutions of [47] |
---|---|
, solution
becomes . | Solution
of this paper is , where . |
If
, solution
becomes . | Solution
of this study is , where . |
For
, solution
can be expressed as . | Solution
of this article is . |
For
, solution
can be expressed as . | Solution
of this article is . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, W.W.; Khatun, M.M.; Algolam, M.S.; Sidaoui, R.; Akbar, M.A. Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications. Fractal Fract. 2025, 9, 438. https://doi.org/10.3390/fractalfract9070438
Mohammed WW, Khatun MM, Algolam MS, Sidaoui R, Akbar MA. Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications. Fractal and Fractional. 2025; 9(7):438. https://doi.org/10.3390/fractalfract9070438
Chicago/Turabian StyleMohammed, Wael W., Mst. Munny Khatun, Mohamed S. Algolam, Rabeb Sidaoui, and M. Ali Akbar. 2025. "Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications" Fractal and Fractional 9, no. 7: 438. https://doi.org/10.3390/fractalfract9070438
APA StyleMohammed, W. W., Khatun, M. M., Algolam, M. S., Sidaoui, R., & Akbar, M. A. (2025). Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications. Fractal and Fractional, 9(7), 438. https://doi.org/10.3390/fractalfract9070438