Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (383)

Search Parameters:
Keywords = air-source heat pumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4676 KB  
Article
Investigation of the Influence Mechanism and Analysis of Engineering Application of the Solar PVT Heat Pump Cogeneration System
by Yujia Wu, Zihua Li, Yixian Zhang, Gang Chen, Gang Zhang, Xiaolan Wang, Xuanyue Zhang and Zhiyan Li
Energies 2026, 19(2), 450; https://doi.org/10.3390/en19020450 - 16 Jan 2026
Viewed by 94
Abstract
Amidst the ongoing global energy crisis, environmental deterioration, and the exacerbation of climate change, the development of renewable energy, particularly solar energy, has become a central topic in the global energy transition. This study investigates a solar photovoltaic thermal (PVT) heat pump system [...] Read more.
Amidst the ongoing global energy crisis, environmental deterioration, and the exacerbation of climate change, the development of renewable energy, particularly solar energy, has become a central topic in the global energy transition. This study investigates a solar photovoltaic thermal (PVT) heat pump system that utilizes an expanded honeycomb-channel PVT module to enhance the comprehensive utilization efficiency of solar energy. A simulation platform for the solar PVT heat pump system was established using Aspen Plus software (V12), and the system’s performance impact mechanisms and engineering applications were researched. The results indicate that solar irradiance and the circulating water temperature within the PVT module are the primary factors affecting system performance: for every 100 W/m2 increase in solar irradiance, the coefficient of performance for heating (COPh) increases by 13.7%, the thermoelectric comprehensive performance coefficient (COPco) increases by 14.9%, and the electrical efficiency of the PVT array decreases by 0.05%; for every 1 °C increase in circulating water temperature, the COPh and COPco increase by 11.8% and 12.3%, respectively, and the electrical efficiency of the PVT array decreases by 0.03%. In practical application, the system achieves an annual heating capacity of 24,000 GJ and electricity generation of 1.1 million kWh, with average annual COPh and COPco values of 5.30 and 7.60, respectively. The Life Cycle Cost (LCC) is 13.2% lower than that of the air-source heat pump system, the dynamic investment payback period is 4–6 years, and the annual carbon emissions are reduced by 94.6%, demonstrating significant economic and environmental benefits. This research provides an effective solution for the efficient and comprehensive utilization of solar energy, utilizing the low-global-warming-potential refrigerant R290, and is particularly suitable for combined heat and power applications in regions with high solar irradiance. Full article
Show Figures

Figure 1

27 pages, 1847 KB  
Article
Title Use of Waste Heat from Generator Sets as the Low-Temperature Heat Source for Heat Pumps
by Sławomir Rabczak, Krzysztof Nowak and Karol Nowak
Energies 2026, 19(2), 361; https://doi.org/10.3390/en19020361 - 12 Jan 2026
Viewed by 211
Abstract
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator [...] Read more.
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator and an air-to-water heat pump operate within an insulated thermal chamber, enabling the recovery of waste heat to maintain a stable 15 °C inlet temperature for the heat pump. Theoretical analysis was supplemented with preliminary experimental tests performed on a small generator placed in a thermally insulated enclosure. Measurements of temperature rise and heat output allowed for verification of the real heat-recovery efficiency, which reached approximately 28%. Based on real household heating demand, this study evaluated annual heat demand, heat pump electricity consumption, and fuel requirements for several recovery scenarios (28%, 45%, and 60%). The results show that maintaining a constant 15 °C source temperature significantly improves heat-pump efficiency, reducing annual electricity demand. Increasing heat-recovery efficiency from 28% to 60% reduces fuel consumption by more than half and lowers the annual operating costs. The findings confirm the potential of generator-supported heat-pump systems to enhance energy efficiency in off-grid applications and provide a sound basis for further optimization and real-scale validation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

16 pages, 9728 KB  
Article
Frost Suppression and Enhancement of an Air-Source Heat Pump via an Electrostatically Sprayed Superhydrophobic Heat Exchanger
by Sicheng Fan, Zhengyu Duan, Zhaoqing Ke, Donghua Zou and Zhiping Yuan
Energies 2026, 19(2), 342; https://doi.org/10.3390/en19020342 - 10 Jan 2026
Viewed by 125
Abstract
Frost accumulation on heat exchangers severely limits the efficiency and reliability of air-source heat pumps (ASHPs) in cold, humid environments. Superhydrophobic coatings fabricated via electrostatic spraying offer a promising energy-free strategy for frost suppression. In this study, a robust superhydrophobic coating was deposited [...] Read more.
Frost accumulation on heat exchangers severely limits the efficiency and reliability of air-source heat pumps (ASHPs) in cold, humid environments. Superhydrophobic coatings fabricated via electrostatic spraying offer a promising energy-free strategy for frost suppression. In this study, a robust superhydrophobic coating was deposited on the heat exchanger of a residential ASHP using this scalable technique. Under low-temperature heating conditions (2/1 °C), the coated exchanger delayed frost completion by a factor of 2.83 and shortened defrosting time by 33.3% compared to a conventional hydrophilic counterpart. These improvements translated to a 6.24% increase in average heating capacity and a 2.83% gain in the coefficient of performance (COP). Although the thicker superhydrophobic coating resulted in a marginal 3.1% reduction in cooling capacity during free-cooling operation, the significant enhancements in frost resistance and heating performance underscore its practical value. This work demonstrates that electrostatic spraying is a viable and effective method for fabricating high-performance superhydrophobic heat exchangers, paving the way for more efficient and frost-resistant ASHPs. Full article
(This article belongs to the Special Issue Novel Technologies and Sustained Advances of Heat Pump System)
Show Figures

Figure 1

26 pages, 3077 KB  
Article
Coordinated Scheduling of BESS–ASHP Systems in Zero-Energy Houses Using Multi-Agent Reinforcement Learning
by Jing Li, Yang Xu, Yunqin Lu and Weijun Gao
Buildings 2026, 16(2), 274; https://doi.org/10.3390/buildings16020274 - 8 Jan 2026
Viewed by 222
Abstract
This paper addresses the critical challenge of multi-objective optimization in residential Home Energy Management Systems (HEMS) by proposing a novel framework based on an Improved Multi-Agent Proximal Policy Optimization (MAPPO) algorithm. The study specifically targets the low convergence efficiency of Multi-Agent Deep Reinforcement [...] Read more.
This paper addresses the critical challenge of multi-objective optimization in residential Home Energy Management Systems (HEMS) by proposing a novel framework based on an Improved Multi-Agent Proximal Policy Optimization (MAPPO) algorithm. The study specifically targets the low convergence efficiency of Multi-Agent Deep Reinforcement Learning (MADRL) for coupled Battery Energy Storage System (BESS) and Air Source Heat Pump (ASHP) operation. The framework synergistically integrates an action constraint projection mechanism with an economic-performance-driven dynamic learning rate modulation strategy, thereby significantly enhancing learning stability. Simulation results demonstrate that the algorithm improves training convergence speed by 35–45% compared to standard MAPPO. Economically, it delivers a cumulative cost reduction of 15.77% against rule-based baselines, outperforming both Independent Proximal Policy Optimization (IPPO) and standard MAPPO benchmarks. Furthermore, the method maximizes renewable energy utilization, achieving nearly 100% photovoltaic self-consumption under favorable conditions while ensuring robustness in extreme scenarios. Temporal analysis reveals the agents’ capacity for anticipatory decision-making, effectively learning correlations among generation, pricing, and demand to achieve seamless seasonal adaptability. These findings validate the superior performance of the proposed centralized training architecture, providing a robust solution for complex residential energy management. Full article
Show Figures

Figure 1

15 pages, 2261 KB  
Article
Exploring the Potential of Buried Pipe Systems to Reduce Cooling Energy Consumption of Agro-Industrial Buildings Under Climate Change Scenarios: A Study in a Tropical Climate
by Luciane Cleonice Durante, Ivan Julio Apolonio Callejas, Alberto Hernandez Neto and Emeli Lalesca Aparecida da Guarda
Climate 2026, 14(1), 11; https://doi.org/10.3390/cli14010011 - 31 Dec 2025
Viewed by 314
Abstract
Agro-industrial facilities host processes and products that are highly sensitive to thermal fluctuations. Given the projected increase in air temperatures in tropical regions due to climate change, improving indoor thermal conditions in these facilities has become critically important. Conventional cooling systems are widely [...] Read more.
Agro-industrial facilities host processes and products that are highly sensitive to thermal fluctuations. Given the projected increase in air temperatures in tropical regions due to climate change, improving indoor thermal conditions in these facilities has become critically important. Conventional cooling systems are widely used to maintain adequate indoor temperatures; however, they are associated with high energy consumption. In this context, Ground Source Heat Pump (GSHP) technology emerges as a promising alternative to reduce cooling loads by exchanging heat with the ground. This study evaluates the reductions in cooling energy consumption and the return on investment of a GSHP system integrated with conventional cooling system, considering a prototype agro-industrial room located in two ecotones of the Brazilian Midwest: the Amazon Forest (AF) and Brazilian Savanna (BS). Building energy simulations were performed using EnergyPlus software v. 9 under current climate conditions and climate change scenarios for 2050 and 2080. Initially, the prototype room was conditioned using a conventional HVAC system; subsequently, a GSHP system was integrated to enhance energy efficiency and reduce energy demand. Under current conditions, cooling energy demand in the BS and AF ecotones is projected to increase by 16.5% and 18.3% by 2050, and by 24.5% and 23.5% by 2080, respectively. The payback analysis indicates that the average return on investment improves under future climate scenarios, decreasing from 14.5 years under current conditions to 10.13 years in 2050 and 9.86 years in 2080. The findings contribute to understanding the thermal resilience and economic feasibility of ground-coupled heat exchangers as a sustainable strategy for mitigating climate change impacts in the agro-industrial sector. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

16 pages, 2116 KB  
Article
Case Study of CO2 Cascade Air-Source Heat Pump in Public Building Renovation: Simulation, Field Measurement, and Performance Evaluation
by Li Ma, Jing Yuan, Tiansheng Wang, Lin Shi, Ashley Feng, Weipeng Zhang, Xiaoyu Li, Wei Li and Dexin Li
Buildings 2026, 16(1), 157; https://doi.org/10.3390/buildings16010157 - 29 Dec 2025
Viewed by 272
Abstract
In cold climates, maintaining indoor comfort in winter requires heating systems to supply consistent and adequate heat at low ambient temperatures, making the proper definition of indoor and outdoor design temperatures critical for equipment selection. In this paper, a flexible parameter-adjustment design approach [...] Read more.
In cold climates, maintaining indoor comfort in winter requires heating systems to supply consistent and adequate heat at low ambient temperatures, making the proper definition of indoor and outdoor design temperatures critical for equipment selection. In this paper, a flexible parameter-adjustment design approach is proposed, combining on-site testing and simulation to refine heating load calculation, and a CO2 cascade air-source heat pump (ASHP) renovation project for a cold-climate public building is used as a case study. The optimized approach ensured that the selected ASHP maintained indoor temperature above 20 °C, with the system achieving a heating season COP of 2.89. Even at −22.2 °C, it kept indoor temperature at 22.4 °C, with a COP of 2.70. This study confirms the effectiveness of the approach and offers a practical reference for similar projects. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 3307 KB  
Article
Measured vs. Rated COP and Carbon Emissions of an Air-Source Heat Pump
by Song-Seop Lee, Ji-Hyeon Kim, Hee-Won Lim and U-Cheul Shin
Energies 2026, 19(1), 155; https://doi.org/10.3390/en19010155 - 27 Dec 2025
Viewed by 350
Abstract
This study evaluates the operational performance and carbon emissions of an air-source heat pump (ASHP) system based on a one-year field monitoring campaign conducted at a single-family detached house in Gongju, South Korea. The system, equipped with a 9 kW air-to-water ASHP, supplied [...] Read more.
This study evaluates the operational performance and carbon emissions of an air-source heat pump (ASHP) system based on a one-year field monitoring campaign conducted at a single-family detached house in Gongju, South Korea. The system, equipped with a 9 kW air-to-water ASHP, supplied both space heating (SH) and domestic hot water (DHW), achieving average coefficients of performance (COPs) of 2.27 for SH and 2.06 for DHW. To estimate nominal COPs, a bi-quadratic regression model was developed using manufacturer catalog data and compared against field measurements. The analysis revealed a significant performance decline during winter: a paired t-test using 7119 samples confirmed a statistically significant discrepancy under low-temperature conditions. Annual CO2-equivalent (CO2eq) emissions were also evaluated. Under current grid emission factors, the ASHP system emitted 1532 kgCO2eq—approximately 8.6% more than a condensing gas boiler (1411 kgCO2eq), primarily due to winter performance degradation and the relatively high carbon intensity of electricity. These findings underscore the importance of incorporating actual operating conditions, seasonal variability, and the national electricity emission factor when assessing ASHP performance and life cycle climate performance (LCCP). Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

29 pages, 1483 KB  
Article
Economic and Energy Efficiency of Bivalent Heating Systems in a Retrofitted Hospital Building: A Case Study
by Jakub Szymiczek, Krzysztof Szczotka, Piotr Michalak, Radosław Pyrek and Ewa Chomać-Pierzecka
Energies 2026, 19(1), 10; https://doi.org/10.3390/en19010010 - 19 Dec 2025
Viewed by 379
Abstract
This case study evaluates the economic and energy efficiency of retrofitting a hospital heating system in Krakow, Poland, by transitioning from a district-heating-only model to a bivalent hybrid system. The analyzed configuration integrates air-to-water heat pumps (HP), a 180 kWp photovoltaic (PV) installation, [...] Read more.
This case study evaluates the economic and energy efficiency of retrofitting a hospital heating system in Krakow, Poland, by transitioning from a district-heating-only model to a bivalent hybrid system. The analyzed configuration integrates air-to-water heat pumps (HP), a 180 kWp photovoltaic (PV) installation, and a 120 kWh battery energy storage (ES) unit, while retaining the municipal district heating network as a peak load and backup source. Utilizing high-resolution quasi-steady-state simulations in Ebsilon Professional (10 min time step) and projected 2025 market data, the study compares three modernization scenarios differing in heat pump capacity (20, 40, and 60 kW). The assessment focuses on key performance indicators, including Net Present Value (NPV), Levelized Cost of Heating (LCOH), and Simple Payback Time (SPBT). The results identify the bivalent system with 40 kW thermal capacity (Variant 2) as the economic optimum, delivering the highest NPV (EUR 121,021), the lowest LCOH (0.0908 EUR/kWh), and a payback period of 11.94 years. Furthermore, the study quantitatively demonstrates the law of diminishing returns in the oversized scenario (60 kW), confirming that optimal sizing is critical for maximizing the efficiency of bivalent systems in public healthcare facilities. This work provides a detailed methodology and data that can form a basis for making investment decisions in similar public utility buildings in Central and Eastern Europe. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 4th Edition)
Show Figures

Figure 1

21 pages, 1599 KB  
Article
Life Cycle Carbon Emissions of GSHP Versus Traditional HVAC System for Residential Building: A Case from Jinan, China
by Jiayi Wang, Ke Zhu, Shulin Wang, Boli Wang, Haochen Lu and Ping Cui
Buildings 2025, 15(24), 4566; https://doi.org/10.3390/buildings15244566 - 18 Dec 2025
Viewed by 366
Abstract
The building sector represents a major source of global carbon emissions, with heating and cooling systems being particularly critical contributors, making the evaluation of sustainable low-carbon alternatives an urgent priority. In this study, life cycle assessment (LCA) methodology is used to analyze ground [...] Read more.
The building sector represents a major source of global carbon emissions, with heating and cooling systems being particularly critical contributors, making the evaluation of sustainable low-carbon alternatives an urgent priority. In this study, life cycle assessment (LCA) methodology is used to analyze ground source heat pump (GSHP) systems against traditional heating, ventilation, and air conditioning (HVAC) systems based on project data from the city of Jinan and electrical grid characteristics of Northern China. It is specified that the functional unit is providing heating and cooling that maintains the indoor temperature of the building between 18 °C and 26 °C for 20 years. Following ISO 14040 standards, carbon emissions and economic performance across four phases—production, transportation, construction, and operation—over a 20-year life cycle were quantified using actual material inventory data and region-specific carbon emissions factors. The results demonstrate obvious environmental advantages for GSHP systems, which achieve a 51% reduction in life cycle carbon emissions compared to traditional systems based on the current power generation structure. Furthermore, sensitivity analysis shows that as the proportion of renewable energy in the grid increases to meet carbon neutrality targets, the reduction potential can even reach 88%. Economic analysis reveals that despite higher initial investments, GSHP systems achieve favorable performance with a positive 20-year net present value and an acceptable dynamic payback period for the project. This study shows that GSHP systems represent a viable strategy for sustainable building design in northern China, and the substantial carbon reduction potential can be further enhanced through grid decarbonization and renewable energy integration. The implementation of the GSHP system in newly constructed buildings, which require both heating and cooling, in Northern China, can be an effective strategy for advancing carbon neutrality goals. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 8444 KB  
Article
A Novel Standalone TRNSYS Type for a Patented Shallow Ground Heat Exchanger: Development and Implementation in a DSHP System
by Silvia Cesari, Yujie Su and Michele Bottarelli
Energies 2025, 18(24), 6605; https://doi.org/10.3390/en18246605 - 17 Dec 2025
Viewed by 294
Abstract
Decarbonizing building energy use requires efficient heat pumps and low-impact geothermal exchangers. A novel standalone TRNSYS Type was developed for a patented shallow horizontal ground heat exchanger (HGHE), called flat-panel (FP), designed at the University of Ferrara. Beyond simulating the FP in isolation, [...] Read more.
Decarbonizing building energy use requires efficient heat pumps and low-impact geothermal exchangers. A novel standalone TRNSYS Type was developed for a patented shallow horizontal ground heat exchanger (HGHE), called flat-panel (FP), designed at the University of Ferrara. Beyond simulating the FP in isolation, the Type enables coupling with other components within heat-pump configurations, allowing performance assessments that reflect realistic operating conditions. The Type was implemented in TRNSYS models of a ground-source heat pump (GSHP) and of a dual air and ground source heat pump (DSHP) to verify Type reliability and evaluate potential DSHP advantages over GSHP in terms of efficiency and ground-loop downsizing. The performance of the system was analyzed under varying HGHE lengths and DSHP control strategies, which were based on onset temperature differential DT. The results highlighted that shorter HGHE lines yielded higher specific HGHE performance, while higher DT reduced HGHE operating time. Concurrently, the total energy extracted from the ground decreased with increasing DT and reduced length, thus supporting long-term thermal preservation and allowing HGHE to operate under more favorable conditions. Exploiting air as an alternative or supplemental source to the ground allows significant reduction of the HGHE length and the related installation costs, without compromising the system performance. Full article
Show Figures

Figure 1

22 pages, 2671 KB  
Article
Performance Optimization of Solar-Air Source Heat Pump Heating System for Rural Residences in Hot Summer and Cold Winter Zone
by Yanhui Geng and Lianyuan Feng
Processes 2025, 13(12), 4039; https://doi.org/10.3390/pr13124039 - 14 Dec 2025
Viewed by 426
Abstract
Building energy consumption is a major source of carbon emissions, with the heating energy demand of rural buildings in the hot summer and cold winter (HSCW) zone having increased 575-fold over the past 15 years. This research investigated an optimized solar–air source heat [...] Read more.
Building energy consumption is a major source of carbon emissions, with the heating energy demand of rural buildings in the hot summer and cold winter (HSCW) zone having increased 575-fold over the past 15 years. This research investigated an optimized solar–air source heat pump (SASHP) system to meet the heating demand of rural residences in this region. First, a typical rural building model was developed using SketchUp, and its heating load was simulated using TRNSYS, revealing an average load of 3.38 kW and a peak load of 5.9 kW. Based on the latest technical standards, the SASHP system was designed and simulated using TRNSYS, achieving an overall coefficient of performance (COP) of 3.67 while maintaining indoor thermal comfort within ISO 7730 Category II. Subsequently, the system was optimized through GenOpt to minimize the annual equivalent cost, yielding key parameters: a 15 m2 solar collector at a 40.75° tilt, a 0.35 m3 water tank, and a 10.16 kW air source heat pump. Compared with the initial design, the optimized configuration achieved reductions of 35.60% in initial investment and 32.68% in annual equivalent costs. By ensuring thermal comfort and overcoming the economic barrier, this study provides a viable pathway for adoption and promotion of renewable heating technology in rural areas. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Graphical abstract

23 pages, 1752 KB  
Article
Economics of Renewables Versus Fossil Fuels 2022–2036: Case Study of an Individual House Applying Investment Project Evaluation Methods
by Robert Uberman and Wojciech Naworyta
Energies 2025, 18(23), 6282; https://doi.org/10.3390/en18236282 - 29 Nov 2025
Viewed by 546
Abstract
This paper presents a comprehensive economic comparison between renewable and fossil-fuel-based heating systems for a newly constructed residential building in Kraków, Poland, over the period 2022–2030. The analysis introduces the concept of Corrected Final Energy Consumption (CFEC) as a harmonized measure for comparing [...] Read more.
This paper presents a comprehensive economic comparison between renewable and fossil-fuel-based heating systems for a newly constructed residential building in Kraków, Poland, over the period 2022–2030. The analysis introduces the concept of Corrected Final Energy Consumption (CFEC) as a harmonized measure for comparing various energy sources and applies the Present Value of Total Lifecycle Cost (PVTLC) as an appropriate financial metric for non-commercial residential investments. Four heating options were examined: district heating system (DHS), gas boiler, air-to-water heat pump, and heat pump combined with photovoltaic (PV) panels. Based on real tariffs and standardized data from the Energy Performance Certificate (EPC), the DHS option demonstrated the lowest lifecycle cost, while the air-to-water heat pump—despite environmental advantages—proved the most expensive without substantial subsidies. Sensitivity analyses confirmed the strong influence of investment subsidies and fuel price fluctuations on the competitiveness of alternative systems. The findings highlight the methodological shortcomings of conventional annual-cost approaches and propose PVTLC as a more reliable decision-making tool for residential energy planning. The study also discusses regulatory, climatic, and behavioral factors affecting investment outcomes and emphasizes the need to integrate financial, environmental, and social criteria when evaluating household-level energy solutions. Full article
Show Figures

Figure 1

26 pages, 1830 KB  
Article
Environmental Effects of Static Drill-Rooted Energy Piles in Coastal Soft Soil Areas
by Zhejing Du, Yuebao Deng, Shuaijiong Chen and Rihong Zhang
Sustainability 2025, 17(23), 10663; https://doi.org/10.3390/su172310663 - 28 Nov 2025
Viewed by 355
Abstract
The static drill-rooted energy pile is an emerging green technology increasingly applied in coastal soft soil areas. Existing research has mainly focused on its heat transfer and bearing characteristics, while studies on its environmental impacts remain limited. Based on the Green Building Evaluation [...] Read more.
The static drill-rooted energy pile is an emerging green technology increasingly applied in coastal soft soil areas. Existing research has mainly focused on its heat transfer and bearing characteristics, while studies on its environmental impacts remain limited. Based on the Green Building Evaluation Standard and the Life Cycle Assessment method and drawing on practical energy pile projects in coastal areas, this study developed an environmental impact assessment system for energy piles. A comprehensive evaluation method was established, incorporating four indicators: muck and slurry discharge, vibration, noise, and carbon reduction benefits. Using a pilot project, field testing and theoretical analysis were conducted to assess the environmental impact of static drill-rooted energy piles. The results revealed that muck and slurry discharge is significantly lower compared to bored energy piles. Vibration levels at a site office located 30 m from the construction point were below the annoyance threshold of 0.05 g in terms of relative vibration acceleration. Noise levels dropped below the emission limit of 85 dB at a distance of 5 m. Carbon emissions during the material production stage were reduced by 22–45% compared to bored energy piles and by 12% during the construction stage. During the operation stage, compared to air-source heat pumps, electricity savings of 0.691–0.836 kWh per hour and CO2 emission reductions of 0.471–0.57 kg per hour were achieved. Based on the comprehensive scoring of all indicators, the static drill-rooted energy pile technology received an overall rating of ‘‘excellent.’’ This study provided an evaluation framework for the environmental assessment of energy piles and contributed positively to promoting the development of green infrastructure. Full article
Show Figures

Figure 1

21 pages, 3089 KB  
Article
A Case Study of Operating Strategy Analysis of Heating and Cooling Source Units for a Large Sports Center
by Jian Li, Licong Dong, Jiangtao Wen, Jian Hong, Xiaolong Xie, Caizhi Xu, Gang Yang, Junli Zhou and Wei Yang
Buildings 2025, 15(23), 4301; https://doi.org/10.3390/buildings15234301 - 27 Nov 2025
Cited by 1 | Viewed by 574
Abstract
As large public buildings requiring expansive spatial environments, public gymnasiums exhibit significant overall energy consumption due to their complex physical structures and usage characteristics. HVAC systems account for a substantial portion of this energy use, making their efficient operation critical for reducing energy [...] Read more.
As large public buildings requiring expansive spatial environments, public gymnasiums exhibit significant overall energy consumption due to their complex physical structures and usage characteristics. HVAC systems account for a substantial portion of this energy use, making their efficient operation critical for reducing energy consumption in sports facilities. This study employs TRNSYS 18 simulation to construct a model based on the existing heating and cooling source units for an Olympic Sports Center. By altering control strategies, we analyze the energy consumption of units for different seasons to determine operating strategy. Results indicate that, during the cooling season, a sequential start-up strategy for chillers—prioritizing those with the highest COP in response to dynamic terminal load variations—offers 4.72% energy-saving potential during the cooling season. During the heating season, significant energy savings—up to 18.6%—can be achieved by using air-source heat pumps as the base load supply, operating them continuously, and deploying gas boilers only when supplemental heating is required. These findings offer quantitative support for the optimization of HVAC systems in large Public Gymnasiums, demonstrating a viable pathway to substantially improve energy efficiency, reduce operational costs, and advance carbon reduction initiatives, thereby promoting long-term operational sustainability. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

22 pages, 1428 KB  
Article
Influence of Photovoltaic Panel Parameters on the Primary Energy Consumption of a Low-Energy Building with an Air-Source Heat Pump—TRNSYS Simulations
by Agata Ołtarzewska, Antonio Rodero Serrano and Dorota Anna Krawczyk
Energies 2025, 18(22), 5965; https://doi.org/10.3390/en18225965 - 13 Nov 2025
Viewed by 647
Abstract
The integration of photovoltaic systems with heat pumps can significantly influence primary energy consumption indicators and therefore plays a particularly important role in the low-energy construction sector. This study provides a simulation-based assessment of the impact of selected photovoltaic panel parameters on the [...] Read more.
The integration of photovoltaic systems with heat pumps can significantly influence primary energy consumption indicators and therefore plays a particularly important role in the low-energy construction sector. This study provides a simulation-based assessment of the impact of selected photovoltaic panel parameters on the primary energy (PE) index in a low-energy building equipped with an air-source heat pump. The building, located in the relatively cold climate of north-eastern Poland, was analyzed in two insulation variants of the building envelope. In each variant and system configuration, the total amount of energy produced by the panels (EPV) and used by the system (Eused), as well as the degree to which the system’s electricity demand was covered by the photovoltaic panels (ηcov) and their self-consumption degree (ηself), were assessed. The results showed that, in the baseline scenarios, photovoltaic panels were able to generate 5586 kWh of electricity, covering an average of 60–63% of the system’s demand and achieving a self-consumption of approximately 59%. The EPV, Eused, and ηcov are inversely proportional to the ηself and PE index. The PE index, ηcov, and ηself ranged from 22.6 to 80 kWh/m2, 25.3 to 77.5%, and 23.9 to 100%, respectively, depending on the variant and configuration. The wide range of the obtained results confirms that the analyzed factors have a significant impact on the performance of building-integrated photovoltaic panels. In addition, the use of ASHP and PV instead of a gas boiler and grid electricity reduced both the EP index and CO2 emissions by 59–67%. Full article
Show Figures

Figure 1

Back to TopTop