Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = air density correction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2980 KB  
Article
Assessment of Vertical Wind Characteristics for Wind Energy Utilization and Carbon Emission Reduction
by Li Jiang, Changqing Shi, Shijia Zhang, Lvbing Cao, Xiangdong Meng, Ligang Jiang, Xiaodong Ji and Tingning Zhao
Atmosphere 2026, 17(1), 102; https://doi.org/10.3390/atmos17010102 (registering DOI) - 18 Jan 2026
Abstract
With the rapid advancement of clean energy, wind farm planning and construction are expanding worldwide, increasing the demand for accurate resource assessments. This study investigates the influence of vertical wind characteristics on wind farm siting and energy production, using measured meteorological data from [...] Read more.
With the rapid advancement of clean energy, wind farm planning and construction are expanding worldwide, increasing the demand for accurate resource assessments. This study investigates the influence of vertical wind characteristics on wind farm siting and energy production, using measured meteorological data from the Hangjinqi wind farm. Results show that both mean wind speed increase substantially with altitude, indicating that upper layers provide richer and more stable wind resources. The estimated annual energy production of the site reaches 23,500 MWh, with capacity factors ranging from 35% to 42%, well above the national average. Seasonal and diurnal variations are evident: wind speeds strengthen during winter and spring, particularly at night, while turbulence intensity peaks in the daytime and decreases with height. Carbon dioxide (CO2) reduction also increases with hub height, with the most pronounced seasonal reductions in spring (3367.6–5041.1 tCO2, +49.7%) and winter (3215.7–5380.0 tCO2, +67.4%), equivalent to several thousand tons of standard coal per turbine annually. Optimal performance is observed at 100–140 m, demonstrating efficient utilization of mid- to high-altitude resources. Nevertheless, discrepancies in turbine performance at different hub heights suggest untapped potential at higher elevations. These findings highlight the importance of incorporating vertical wind characteristics into wind farm siting decisions, and support the deployment of turbines with tower heights ≥140 m alongside intelligent scheduling and forecasting strategies to maximize energy yield and economic benefits. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 3548 KB  
Article
Study on Separation Density of Feeding Group Particle in the Gas–Solid Separation Fluidized Bed
by Xuchen Fan, Yuping Fu, Yongliang He, Liying Sun and Yijiang Li
Separations 2026, 13(1), 12; https://doi.org/10.3390/separations13010012 - 26 Dec 2025
Viewed by 207
Abstract
Gas–solid separation fluidized bed is an efficient coal cleaning and separation technology, and this technology has been extensively used in coal separation. The separation of the feeding coal particles in the fluidized bed is generally carried out in the form of particle groups, [...] Read more.
Gas–solid separation fluidized bed is an efficient coal cleaning and separation technology, and this technology has been extensively used in coal separation. The separation of the feeding coal particles in the fluidized bed is generally carried out in the form of particle groups, hence, a systematic examination of stratification as well as diffusion of the feeding particle group in the gas–solid separation fluidized bed is required. Simulated particles are used in this study and the technique that combines both theoretical calculation and an experimental method is used to investigate the effect of the inherent properties of the feeding particle group, bed characteristics, and operating parameters on the variation in voidage and air drag force in the separation process. According to the correlation between the separation density of the single-component particle group and the voidage of the gas–solid separation fluidized bed, the ρG.drag (change in separation density brought about by the upward airflow drag force during particle group fluidized bed separation) prediction model of the single-component spherical feeding particle group in the gas–solid separation fluidized bed is developed with the correction of voidage. When the prediction error of the ρG.drag prediction model is 10%, the confidence degree is 90.00%. Based on the particle segregation model and the ρG.drag prediction model, the separation density prediction model for the single-component spherical feeding particle group in the gas–solid separation fluidized bed is proposed. On this basis, the separation density prediction model for the single-component non-spherical feeding particle group in the gas–solid separation fluidized bed is further introduced. The separation density prediction model provides critical guidance for optimizing the gas–solid fluidized bed separation process. Full article
(This article belongs to the Special Issue Research Progress of Gas–Solid Fluidized Dry Separation)
Show Figures

Figure 1

27 pages, 13958 KB  
Article
Digitizing Legacy Gravimetric Data Through GIS and Field Surveys: Toward an Updated Gravity Database for Kazakhstan
by Elmira Orynbassarova, Katima Zhanakulova, Hemayatullah Ahmadi, Khaini-Kamal Kassymkanova, Daulet Kairatov and Kanat Bulegenov
Geosciences 2026, 16(1), 16; https://doi.org/10.3390/geosciences16010016 - 24 Dec 2025
Viewed by 303
Abstract
This study presents the digitization and integration of Kazakhstan’s legacy gravimetric maps at a scale of 1:200,000 into a modern geospatial database using ArcGIS. The primary objective was to convert analog gravity data into a structured, queryable, and spatially analyzable digital format to [...] Read more.
This study presents the digitization and integration of Kazakhstan’s legacy gravimetric maps at a scale of 1:200,000 into a modern geospatial database using ArcGIS. The primary objective was to convert analog gravity data into a structured, queryable, and spatially analyzable digital format to support contemporary geoscientific applications, including geoid modeling and regional geophysical analysis. The project addresses critical gaps in national gravity coverage, particularly in underrepresented regions such as the Caspian Sea basin and the northeastern frontier, thereby enhancing the accessibility and utility of gravity data for multidisciplinary research. The methodology involved a systematic workflow: assessment and selection of gravimetric maps, raster image enhancement, georeferencing, and digitization of observation points and anomaly values. Elevation data and terrain corrections were incorporated where available, and metadata fields were populated with information on the methods and accuracy of elevation determination. Gravity anomalies were recalculated, including Bouguer anomalies (with densities of 2.67 g/cm3 and 2.30 g/cm3), normal gravity, and free-air anomalies. A unified ArcGIS geodatabase was developed, containing spatial and attribute data for all digitized surveys. The final deliverables include a 1:1,000,000-scale gravimetric map of free-air gravity anomalies for the entire territory of Kazakhstan, a comprehensive technical report, and supporting cartographic products. The project adhered to national and international geophysical mapping standards and utilized validated interpolation and error estimation techniques to ensure data quality. The validation process by the modern gravimetric surveys also confirmed the validity and reliability of the digitized historical data. This digitization effort significantly modernizes Kazakhstan’s gravimetric infrastructure, providing a robust foundation for geoid modeling, tectonic studies, and resource exploration. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

21 pages, 5552 KB  
Article
A Climate-Driven Dynamic Model for Highway Emissions in Arid Cities Modifying AP-42 and EEA Algorithms with Silt Loading, Building Geometry, and Fuel Density Parameters
by Raha A. L. Kharabsheh, Ahmed Bdour and Carlos Calderón-Guerrero
Sustainability 2025, 17(23), 10586; https://doi.org/10.3390/su172310586 - 26 Nov 2025
Viewed by 333
Abstract
Accurate assessment of vehicular air pollution in arid urban environments remains a challenge because standard emission models often overlook localized influences such as climate-driven dust resuspension and urban canyon effects. This study develops an enhanced modeling framework that integrates critical regional parameters into [...] Read more.
Accurate assessment of vehicular air pollution in arid urban environments remains a challenge because standard emission models often overlook localized influences such as climate-driven dust resuspension and urban canyon effects. This study develops an enhanced modeling framework that integrates critical regional parameters into established algorithms to improve estimates of traffic-related emissions, including PM10, PM2.5, CO, and NO2. The US EPA’s AP-42 algorithm was modified to incorporate a novel highway width-to-building height ratio (I/H) and a climate-driven dynamic silt loading model derived from satellite data, while the European EEA algorithm was refined by introducing an explicit fuel density correction (ρ). The framework was applied and validated on two representative highways in Jordan—an industrial corridor and an urban-commercial artery—using continuous sensor-based measurements. Results indicate substantial improvement in predictive performance, with reductions of 60–77% in normalized difference for particulate matter and 72% for CO. The model successfully distinguished between emission regimes, capturing a seasonal silt-loading peak of approximately 17.5 g/m2 during autumn at the industrial site, compared to more stable, traffic-dominated emissions along the urban corridor. Although NO2 performance showed modest gains (4–40%) due to complex photochemical processes, the overall framework proved to be a robust and reliable tool for air quality assessment in arid cities. This adaptable approach provides a foundation for targeted air pollution management, and future work will integrate real-time dispersion dynamics and photochemical modules to better capture secondary pollutant formation. Full article
Show Figures

Figure 1

16 pages, 4528 KB  
Article
From Resource Assessment to AEP Correction: Methodological Framework for Comparing HAWT and VAWT Offshore Systems
by María Luisa Ruiz-Leo, Isabel C. Gil-García and Ana Fernández-Guillamón
J. Mar. Sci. Eng. 2025, 13(11), 2183; https://doi.org/10.3390/jmse13112183 - 18 Nov 2025
Viewed by 532
Abstract
The rapid expansion of offshore wind energy requires exploring alternative turbine architectures capable of operating efficiently in deep waters. While horizontal-axis wind turbines (HAWTs) dominate the current market, vertical-axis wind turbines (VAWTs) offer potential advantages in wake recovery, structural integration, and scalability on [...] Read more.
The rapid expansion of offshore wind energy requires exploring alternative turbine architectures capable of operating efficiently in deep waters. While horizontal-axis wind turbines (HAWTs) dominate the current market, vertical-axis wind turbines (VAWTs) offer potential advantages in wake recovery, structural integration, and scalability on floating platforms. This work proposes a methodological framework to enable a fair and reproducible comparison between the two concepts. The approach begins with site selection through spatial exclusion criteria, followed by acquisition and validation of wind data over at least one year, including long-term correction with reanalysis datasets. Technical specifications of both HAWTs and VAWTs (power curves, thrust coefficients, and rotor geometries) are compiled to build consistent turbine models. Wind resource characterization is carried out using sectoral Weibull distributions, energy roses, and vertical wind profiles. Annual energy production (AEP) for HAWTs is estimated with WAsP, while VAWT performance requires geometric normalization to a common top-tip height and subsequent correction factors for air density, turbulence sensitivity, and wake recovery. Case studies demonstrate that corrected AEP values for VAWTs may exceed baseline WAsP estimates by 6–20%, narrowing the performance gap with HAWTs. The framework highlights uncertainties in wake modeling and calls for dedicated computational fluid dynamics (CFD) validation and pilot projects to confirm large-scale VAWT viability. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5303 KB  
Article
Suitability Assessment and Route Network Planning for Low-Altitude Transportation in Urban Agglomerations Using Multi-Source Data
by Jiayi Liu, Gaoru Zhu, Letong Yang and Yiling Shen
Aerospace 2025, 12(9), 777; https://doi.org/10.3390/aerospace12090777 - 28 Aug 2025
Cited by 2 | Viewed by 2008
Abstract
As low-altitude transportation becomes essential to global integrated transport systems, developing extensive and well-structured networks in urban agglomerations is crucial for fostering regional synergy and enhancing three-dimensional transport. Focusing on the Beijing–Tianjin–Hebei urban agglomeration, this study integrates multi-source data within a three-stage research [...] Read more.
As low-altitude transportation becomes essential to global integrated transport systems, developing extensive and well-structured networks in urban agglomerations is crucial for fostering regional synergy and enhancing three-dimensional transport. Focusing on the Beijing–Tianjin–Hebei urban agglomeration, this study integrates multi-source data within a three-stage research framework: (1) node suitability assessment, (2) route optimization, and (3) network structure evaluation. It systematically evaluates the suitability of county-level general aviation airports and township-level vertiports. Building on the suitability analysis, a hierarchical route network is constructed using a modified gravity model augmented by spatial correction mechanisms. Finally, spatial syntax analysis, supplemented with equity and robustness assessments, is applied to evaluate network accessibility, topological efficiency, and resilience. The key findings are as follows: (1) The suitability classification identifies 43 Class A, 86 Class B, and 71 Class C general aviation airports, revealing a spatial pattern characterized by higher density in the east, lower density in the west, and a multi-nodal clustering structure. Township-level vertiports markedly increase terminal-node coverage. (2) The optimized hierarchical network includes 114 primary, 180 secondary, and 366 tertiary routes, bridging previous regional connectivity gaps. (3) High values of network integration, choice, spatial intelligibility, and equity-adjusted accessibility indicate robust performance, fairness in service distribution, and resilience under potential disruptions. This study offers a methodological paradigm for the systematic development of low-altitude transport networks and provides valuable references for evidence-based planning of urban agglomeration air mobility systems and the strategic development of regional low-altitude economies. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

24 pages, 5111 KB  
Article
The Use of Gas Dynamics to Estimate the Influence of Flanges on Gear Windage Power Loss
by Thibaut Torres, Yasser Diab, Christophe Changenet, Thomas Touret and Bérengère Guilbert
Dynamics 2025, 5(3), 33; https://doi.org/10.3390/dynamics5030033 - 14 Aug 2025
Viewed by 604
Abstract
This study aims to develop a new model for windage losses, building upon existing formulation, complemented by dedicated experimental campaigns and a specific methodology designed to isolate and quantify windage losses. The model relies on an analytical approach to flow characterization, incorporating a [...] Read more.
This study aims to develop a new model for windage losses, building upon existing formulation, complemented by dedicated experimental campaigns and a specific methodology designed to isolate and quantify windage losses. The model relies on an analytical approach to flow characterization, incorporating a correction factor accounting for air density reduction. The experimental investigation was carried out on a dedicated test bench and includes both spur and helical gears. The results demonstrate good agreement between the proposed model and the experimental data, with and without the presence of nearby obstacles, such as side flanges, highlighting the model’s robustness across different configurations. The proposed windage loss model reproduces the experimental results with significantly greater accuracy than the original one, yielding relative deviations below 5% compared to almost 20% for spur gears, and below 9% compared to over 21%, and in some cases up to 50%, for helical gears. Full article
Show Figures

Figure 1

16 pages, 838 KB  
Article
A Scintillation Hodoscope for Measuring the Flux of Cosmic Ray Muons at the Tien Shan High Mountain Station
by Alexander Shepetov, Aliya Baktoraz, Orazaly Kalikulov, Svetlana Mamina, Yerzhan Mukhamejanov, Kanat Mukashev, Vladimir Ryabov, Nurzhan Saduyev, Turlan Sadykov, Saken Shinbulatov, Tairzhan Skokbayev, Ivan Sopko, Shynbolat Utey, Ludmila Vildanova, Nurzhan Yerezhep and Valery Zhukov
Particles 2025, 8(3), 73; https://doi.org/10.3390/particles8030073 - 4 Aug 2025
Viewed by 1033
Abstract
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray [...] Read more.
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray Station. The hodoscope is based on a set of large-sized scintillation charged particle detectors with an output signal of analog type. The installation ensures a (5–8) GeV energy threshold of muon registration and a ∼104 dynamic range for the measurement of the density of muon flux. A program facility was designed that uses modern machine learning techniques for automated search for the typical scintillation pulse pattern in an oscillogram of a noisy analog signal at the output of the hodoscope detector. The program provides a ∼99% detection probability of useful signals, with a relative share of false positives below 1%, and has a sufficient operation speed for real-time analysis of incoming data. Complete verification of the hardware and software tools was performed under realistic operation conditions, and the results obtained demonstrate the correctness of the proposed method and its practical applicability to the investigation of the muon flux in EASs. In the course of the installation testing, a preliminary physical result was obtained concerning the rise of the multiplicity of muon particles around an EAS core in dependence on the primary EAS energy. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

19 pages, 1307 KB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 1156
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

17 pages, 1021 KB  
Article
Compressive Sensing-Based Coding Iterative Channel Estimation Method for TDS-OFDM System
by Yuxiao Yang, Xinyue Zhao and Hui Wang
Electronics 2025, 14(12), 2338; https://doi.org/10.3390/electronics14122338 - 7 Jun 2025
Viewed by 798
Abstract
Satellite Internet is the key to integrated air–space–ground communication, while the design of waveforms with high spectrum efficiency is an intrinsic requirement for high-speed data transmission in satellite Internet. Time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology can significantly improve spectrum utilization efficiency [...] Read more.
Satellite Internet is the key to integrated air–space–ground communication, while the design of waveforms with high spectrum efficiency is an intrinsic requirement for high-speed data transmission in satellite Internet. Time-domain synchronous orthogonal frequency division multiplexing (TDS-OFDM) technology can significantly improve spectrum utilization efficiency by using PN sequences instead of traditional CP cyclic prefixes. However, it also leads to time-domain aliasing between PN sequences and data symbols, posing a serious challenge to channel estimation. To solve this problem, a compressive sensing-based coding iterative channel estimation method for the TDS-OFDM system is proposed in this paper. This method innovatively combines compressive sensing channel estimation technology with the Reed–Solomon low-density parity-check cascade coding (RS-LDPC) scheme, and achieves performance improvements as follows: (1) Construct the iterative optimization mechanism for the compressive sensing algorithm and equalization feedback loop. (2) RS-LDPC cascaded coding is employed to enhance the anti-interference and error correction capability of system. (3) Design the recoding link of error-corrected data to improve the accuracy of sensing matrix. The simulation results demonstrate that compared with conventional methods, the proposed method can obviously converge on the mean squared errors (MSEs) of channel estimation and significantly reduce the bit error rate (BER) of the system. Full article
Show Figures

Graphical abstract

19 pages, 4616 KB  
Article
Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction
by Hasupama Jayasinghe, Liliana Arevalo, Richard Morrow and Vernon Cooray
Plasma 2025, 8(2), 21; https://doi.org/10.3390/plasma8020021 - 29 May 2025
Cited by 1 | Viewed by 2569
Abstract
Implementing a computationally efficient numerical model for a single streamer discharge is essential to understand the complex processes such as lightning initiation and electrical discharges in high voltage systems. In this paper, we present a streamer discharge simulation in air, by solving one-dimensional [...] Read more.
Implementing a computationally efficient numerical model for a single streamer discharge is essential to understand the complex processes such as lightning initiation and electrical discharges in high voltage systems. In this paper, we present a streamer discharge simulation in air, by solving one-dimensional (1D) drift diffusion reaction (DDR) equations for charged species with the disc approximation for electric field. A recently developed fourth-order space and time-centered implicit finite difference method (FDM) with a flux-corrected transport (FCT) method is applied to solve the DDR equations, followed by a comparative simulation using the well-established explicit FDM with FCT. The results demonstrate good agreement between implicit and explicit FDMs, verifying their reliability for streamer modeling. The total electrons, total charge, streamer position, and hence the streamer bridging time obtained using the FDMs with FCT agree with the same streamer computed in the literature using different numerical methods and dimensions. The electric field is obtained with good accuracy due to the inclusion of image charges representing the electrodes in the disc method. This accuracy can be further improved by introducing more image charges. Both implicit and explicit FDMs effectively capture the key streamer behavior, including the variations in charged particle densities and electric field. However, the implicit FDM is computationally more efficient. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Figure 1

22 pages, 9955 KB  
Article
Performance Comparison of Permanent Magnet Vernier Motors and Permanent Magnet Synchronous Motors
by Yunjiao Li, Jing Zhao, Jie Fu, Yinliang Xia, Wei Wang and Xiaobei Li
Machines 2025, 13(5), 390; https://doi.org/10.3390/machines13050390 - 8 May 2025
Cited by 2 | Viewed by 1121
Abstract
Nowadays, motor type plays a significant role in the vehicle performances. This article compares various types of permanent magnet vernier motors (PMVMs) with different shapes of field modulation teeth and different numbers of field modulation poles (FMPs). Based on this, the electromagnetic performance [...] Read more.
Nowadays, motor type plays a significant role in the vehicle performances. This article compares various types of permanent magnet vernier motors (PMVMs) with different shapes of field modulation teeth and different numbers of field modulation poles (FMPs). Based on this, the electromagnetic performance of permanent magnet synchronous motors (PMSMs) and PMVMs is compared. First, the back EMF, air gap flux density, flux density distribution, and torque of PMVMs with different shapes of FMPs are compared. Based on the selected PMVMs, the rated torque and overload capacity of PMVMs with different slot–pole combinations are compared. Subsequently, the comprehensive electromagnetic performance of PMVMs and PMSMs is compared, where the strength and weakness of PMSMs and PMVMs are concluded. Finally, a prototype is manufactured and tested, verifying the correctness and accuracy of the simulation model. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 4437 KB  
Article
A Positioning System Design Based on Tunnel Magnetoresistance Sensors for Rapid Zoom Optical Lens
by Junqiang Gong, Dameng Liu and Jianbin Luo
Sensors 2025, 25(6), 1820; https://doi.org/10.3390/s25061820 - 14 Mar 2025
Cited by 1 | Viewed by 1643
Abstract
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) [...] Read more.
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) simulations were utilized to compute the magnetic field distribution of the magnetic grating encoder. Based on analytical computation, the optimal air gap δS between the sensor and magnetic grating is determined to be δS = 0.15 mm, which balances magnetic flux density amplitude and total harmonic distortion. In addition, a simplified fitting model is proposed to reduce computational complexity. We quantify the magnetic interference of VCM through three-dimensional flux leakage mapping by FEM analysis, deriving an optimal sensor position OS, with a 24 mm y-offset and 20 mm z-offset relative to the VCM’s origin OV. The position error caused by interference remains below 5 μm with maximum deviations at trajectory endpoints of the moving group. The original signal output is processed and corrected, and eventually, the measured displacement exhibits a linear relationship with actual displacement. Our study provides a comprehensive framework for the design and optimization of magnetic positioning systems in optical applications with electromagnetic motors. Full article
Show Figures

Figure 1

15 pages, 5577 KB  
Article
Reducing Product Loss Through Ventilation in Bourbon Maturation Warehouses
by Steven J. Schafrik, Michael W. Long, Zachary E. Wedding, Benjamin M. Diddle and Zach Agioutantis
Sustainability 2025, 17(2), 699; https://doi.org/10.3390/su17020699 - 17 Jan 2025
Viewed by 2223
Abstract
The aging process of bourbon within rickhouses is influenced by various environmental factors, including temperature, humidity, air flow, and air quality. Most rickhouses are not climate-controlled, and natural ventilation is a major contributor to airflow. The corrosion of the steel hoops on bourbon [...] Read more.
The aging process of bourbon within rickhouses is influenced by various environmental factors, including temperature, humidity, air flow, and air quality. Most rickhouses are not climate-controlled, and natural ventilation is a major contributor to airflow. The corrosion of the steel hoops on bourbon barrels occurs due to the presence of ethyl alcohol vapors and has become an issue for the distilling industry. The loss of a barrel or product is the loss of all of the energy and materials that went into the distillation, as well as the removal of the barrel from the secondary market. Despite the large economic and sustainability impact of barrel losses, there is limited published research with respect to corrective actions. This paper investigates airflow patterns within a bourbon rickhouse using a combination of differential pressure surveys and smoke tracing techniques to understand how natural ventilation impacts the aging process and potential for corrosion. A newly constructed rickhouse was surveyed using a micro-manometer to measure differential pressure and a sheet laser with smoke to visualize airflow. This study revealed significant zones of stagnant air and minimal recirculation within the ricks, which are the structures that hold the bourbon barrels. Airflow was found to primarily enter through windows and ground vents, moving along the walkways before exiting through other openings, with minimal penetration into the ricks. Differential pressure measurements generally indicated a lack of significant airflow, while smoke tracing showed that air entering the side of the building does not circulate into the ricks. This lack of airflow promotes the separation of ethyl alcohol vapor due to density, leading to its accumulation on the floor of the ricks. The findings of this study highlight the need to consider how rickhouse design impacts airflow and the potential for the corrosion of metal hoops on barrels due to the presence of ethyl alcohol vapor, and provide insight into optimizing the ventilation of rickhouses for more efficient and sustainable bourbon maturation. Full article
Show Figures

Figure 1

13 pages, 2915 KB  
Article
Three-Dimensional Flutter Numerical Simulation of Wings in Heavy Gas and Transonic Flutter Similarity Law Correction Method
by Zhe Hu, Bo Lu, Yongping Liu, Li Yu, Xiping Kou and Jun Zha
Aerospace 2024, 11(11), 932; https://doi.org/10.3390/aerospace11110932 - 11 Nov 2024
Cited by 1 | Viewed by 1506
Abstract
Wind tunnel testing is a crucial method for studying aircraft flutter. Using heavy gas as the wind tunnel medium can mitigate the escalating issue of test models being overweight as advanced aircraft develop. This paper employs an analytical method for numerical calculations of [...] Read more.
Wind tunnel testing is a crucial method for studying aircraft flutter. Using heavy gas as the wind tunnel medium can mitigate the escalating issue of test models being overweight as advanced aircraft develop. This paper employs an analytical method for numerical calculations of three-dimensional (3D) wing flutter based on fluid–structure interaction (FSI). Flutter calculations for the Goland wing are conducted, and the results in the air medium are consistent with the literature. In contrast, significant differences in flutter behavior are observed in the heavy gas R134a medium. Compared to air, when the model reaches a critical state in R134a, the incoming flow velocity is lower, the incoming flow density is approximately 3 to 5 times air, and the incoming flow dynamic pressure is about 1.1 to 1.2 times that of air. The correction of heavy gas flutter data is crucial for wind tunnel testing. This paper proposes a correction method based on the unsteady transonic flow similarity law proposed by Bendiksen under quasi-steady conditions. Attempts are made to revise relevant published wind tunnel tests and heavy gas flutter calculation results. The transonic flutter similarity law effectively explains the flutter similarity of rigid models in both heavy gas and air media. Still, it fails in cases with highly reduced frequencies and low mass ratios, such as those encountered with flexible wings. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop