Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,869)

Search Parameters:
Keywords = agroindustry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1100 KB  
Review
Licorice (Glycyrrhiza glabra): Botanical Aspects, Multisectoral Applications, and Valorization of Industrial Waste for the Recovery of Natural Fiber in a Circular Economy Perspective
by Luigi Madeo, Anastasia Macario, Federica Napoli and Pierantonio De Luca
Fibers 2026, 14(1), 14; https://doi.org/10.3390/fib14010014 - 19 Jan 2026
Viewed by 18
Abstract
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. [...] Read more.
Licorice (Glycyrrhiza glabra) is a perennial herb traditionally valued for its aromatic and therapeutic properties. In recent years, however, growing attention has shifted toward the technical and environmental potential of the plant’s industrial by-products, particularly the fibrous material left after extraction. This review integrates botanical knowledge with engineering and industrial perspectives, highlighting the role of licorice fiber in advancing sustainable innovation. The natural fiber obtained from licorice roots exhibits notable physical and mechanical qualities, including lightness, biodegradability, and compatibility with bio-based polymer matrices. These attributes make it a promising candidate for biocomposites used in green building and other sectors of the circular economy. Developing efficient recovery processes requires collaboration across disciplines, combining expertise in plant science, materials engineering, and industrial technology. The article also examines the economic and regulatory context driving the transition toward more circular and traceable production models. Increasing interest from companies, research institutions, and public bodies in valorizing licorice fiber and its derivatives is opening new market opportunities. Potential applications extend to agroindustry, eco-friendly cosmetics, bioeconomy, and sustainable construction. By linking botanical insights with innovative waste management strategies, licorice emerges as a resource capable of supporting integrated, competitive, and environmentally responsible industrial practices. Full article
19 pages, 4453 KB  
Article
Combining Machine Learning and Vis-NIR Spectroscopy to Estimate Nutrients in Fruit Tree Leaves
by Aparecida Miranda Corrêa, Jean Michel Moura-Bueno, Carlos Augusto Marconato, Micael da Silva Santos, Carina Marchezan, Douglas Luiz Grando, Adriele Tassinari, William Natale, Danilo Eduardo Rozane and Gustavo Brunetto
Horticulturae 2026, 12(1), 108; https://doi.org/10.3390/horticulturae12010108 - 19 Jan 2026
Viewed by 39
Abstract
Traditional chemical analysis of plant tissue is time-consuming, costly, and poses risks due to exposure to toxic gases, highlighting the need for faster, low-cost, and safer alternatives. Vis-NIR spectroscopy, combined with machine learning, offers a promising method for estimating leaf nutrient levels without [...] Read more.
Traditional chemical analysis of plant tissue is time-consuming, costly, and poses risks due to exposure to toxic gases, highlighting the need for faster, low-cost, and safer alternatives. Vis-NIR spectroscopy, combined with machine learning, offers a promising method for estimating leaf nutrient levels without chemical reagents. This study evaluated the potential of Vis-NIR spectroscopy for nutrient estimation in leaf samples of banana (n = 363), mango (n = 239), and grapevine (n = 336) by applying spectral pre-processing techniques—smoothing (SMO) and first derivative Savitzky–Golay (SGD1d) alongside two machine learning methods: Partial Least Squares Regression (PLSR) and Random Forest (RF). Plant tissue samples were analyzed using sulfuric and nitroperchloric wet digestion and hyperspectral sensors. The prediction models were assessed using concordance correlation coefficient (CCC) and mean squared error (MSE). The highest accuracy (CCC > 0.80 and MSE < 2 g kg−1) was achieved for Ca in banana, P in mango, and N and Ca in grapevine across both machine learning methods and pre-processing techniques. The predictive models calibrated for ‘Grapevine’ exhibited the highest accuracy—characterized by higher CCC values and lower MSE values—when compared with the models developed for ‘Mango’ and ‘Banana’. Models using SMO and SGD1d showed better performance than those using raw spectra (RAW). The high amplitudes and variations in nutrient levels, combined with large standard deviations, negatively affected the predictive performance of the models. Full article
Show Figures

Figure 1

21 pages, 7411 KB  
Article
Potential of Conversion of Cassava Processing Residues by Yeasts to Produce Value-Added Bioproducts
by Andreia Massamby, Johanna Blomqvist, Su-lin L. Leong, Yashaswini Nagaraj, Bettina Müller, Volkmar Passoth, Lucas Tivana, Custódia Macuamule and Mats Sandgren
Fermentation 2026, 12(1), 56; https://doi.org/10.3390/fermentation12010056 - 19 Jan 2026
Viewed by 148
Abstract
Cassava is a major starch crop in Africa, generating substantial amounts of solid (peels and fibres) and liquid (process press water) residues that remain underutilised, particularly in smallholder and semi-industrial processing units. In Mozambique, where cassava is a staple and processed primarily by [...] Read more.
Cassava is a major starch crop in Africa, generating substantial amounts of solid (peels and fibres) and liquid (process press water) residues that remain underutilised, particularly in smallholder and semi-industrial processing units. In Mozambique, where cassava is a staple and processed primarily by local farmer associations, these residues—readily available and low-cost feedstocks—have significant potential for value-added applications. This study evaluated the potential of enzymatically hydrolysed cassava residues—peel and fibre hydrolysates—as substrates for independent yeast fermentations targeting microbial lipid and ethanol production. Rhodotorula toruloides CBS 14 efficiently converted sugars from both hydrolysates, producing up to 17.14 g L−1 of cell dry weight (CDW) and 35% intracellular lipid content from the peel hydrolysate, and 16.5 g L−1 CDW with 50% lipids from the fibre hydrolysate. Supplementation with ammonium sulphate accelerated sugar utilisation and reduced fermentation time but did not significantly increase the biomass or lipid yields. Saccharomyces cerevisiae J672 fermented the available sugars anaerobically, achieving ethanol yields of 0.45 ± 0.03 g g−1 glucose from peels and 0.37 ± 0.06 g g−1 glucose from fibres. These findings highlight the regional relevance of valorising cassava processing residues in Mozambique and demonstrate a dual-product valorisation strategy, whereby the same feedstocks are converted into either microbial lipids or ethanol through independent fermentations. This approach supports the sustainable, low-cost utilisation of agro-industrial residues, contributing to circular bioeconomy principles and enhancing the environmental and economic value of local cassava value chains. Full article
Show Figures

Figure 1

17 pages, 1782 KB  
Article
Production of Antimicrobial and Antioxidant Metabolites by Penicillium crustosum Using Lemon Peel as a Co-Substrate in Submerged Fermentation
by Arely Núñez-Serrano, Refugio B. García-Reyes, Juan A. Ascasio-Valdés, Cristóbal N. Aguilar-González and Alcione García-González
Foods 2026, 15(2), 348; https://doi.org/10.3390/foods15020348 - 18 Jan 2026
Viewed by 126
Abstract
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors [...] Read more.
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors and sustainable availability as an agro-industrial byproduct. Crude extracts, aqueous and organic fractions, and molecular-weight partitions were assessed for antioxidant activity using the DPPH assay and for antimicrobial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Semi-purified extracts from co-substrate fermentations exhibited enhanced bioactivity, showing MIC values of 185 µg/mL against P. aeruginosa and 225 µg/mL against MRSA, along with strong ABTS radical-scavenging capacity (238.95 ± 2.17 µmol TE). RP-HPLC-ESI-MS profiling revealed phenolic acids, flavanones, flavonols, and lignans, including ferulic acid 4-O-glucoside, bisdemethoxycurcumin, secoisolariciresinol, and quercetin 3-O-xylosyl-glucuronide. These findings demonstrate that lemon peel supplementation promotes the biosynthesis of antimicrobial and antioxidant metabolites by P. crustosum. This approach supports sustainable agro-waste valorization and offers a promising strategy for obtaining natural bioactive compounds with potential applications in food preservation and health-related formulations. Full article
Show Figures

Figure 1

24 pages, 2021 KB  
Article
Phytochemical Composition and Bioactivity of Different Fruit Parts of Opuntia robusta and Opuntia ficus-indica: Conventional Versus NADES-Based Extraction
by Ouafaa Hamdoun, Sandra Gonçalves, Inês Mansinhos, Raquel Rodríguez-Solana, Gema Pereira-Caro, José Manuel Moreno-Rojas, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach and Anabela Romano
Horticulturae 2026, 12(1), 98; https://doi.org/10.3390/horticulturae12010098 - 17 Jan 2026
Viewed by 70
Abstract
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in [...] Read more.
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in comparison with 50% methanol. Phytochemical profiling was performed using ultra-high-performance liquid chromatography–high-resolution mass spectrometry, alongside antioxidant and enzyme inhibition assessments (acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-glucosidase, and α-amylase). Glycerol–urea performed similarly to methanol in extracting phenolic compounds with notable antioxidant properties. Peel extracts contained the highest levels of bioactive compounds, particularly phenolic acids (525.49 in O. robusta and 362.96 µg/gDW in O. ficus indica). Enzyme inhibition varied across species and fruit parts, with extracts from both species inhibiting all targeted enzymes. Notably, this study provides the first evidence of tyrosinase inhibitory activity in O. robusta, which exhibited the strongest inhibition. Overall, these results emphasize the potential of cactus fruit extracts, particularly from O. robusta, for valorization, and support the use of NADESs as a sustainable and medium for extracting antioxidant compounds. Furthermore, the potential of fruit peel as waste with nutraceutical applications was demonstrated. Full article
Show Figures

Figure 1

19 pages, 3689 KB  
Article
The Use of Monoclonal Antibodies of IgG and IgM Classes to Monitor β-D-Glucan Production from Basidiomycete Mushroom Strains in Agro-Industrial Wastes
by Amin Karmali
Processes 2026, 14(2), 300; https://doi.org/10.3390/pr14020300 - 15 Jan 2026
Viewed by 177
Abstract
A huge amount of waste is produced annually by the food processing industry which must be valorized into high-value products. Therefore, the aim of this work involves the use of such wastes for production of β-glucans from medicinal basidiomycete strains which are [...] Read more.
A huge amount of waste is produced annually by the food processing industry which must be valorized into high-value products. Therefore, the aim of this work involves the use of such wastes for production of β-glucans from medicinal basidiomycete strains which are powerful biological response modifiers in several clinical disorders. The production of β-glucans from basidiomycete strains in submerged fermentation was monitored by using monoclonal antibodies of the IgG and IgM classes as well as by Congo red assay in the presence of several agro-industrial waste products such as milk permeate, waste coffee grounds, orange peels and rice husks. Subsequently, these β-glucans were purified by using gel filtration and ion-exchange chromatography. FTIR analysis of several β-glucans was carried out to investigate their structural properties. The adsorption of β-glucans on microtiter plates was dependent on the temperature as well as on the time period of immobilization for ELISA. These mAbs can be used in a competitive ELISA for detection and quantification of β-glucans from basidiomycete mushrooms. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

20 pages, 2128 KB  
Article
Valorization of Carrot Processing Waste Through Lycopene Recovery and Development of Functional Oil-Enriching Agents
by María Celia Román, Mathias Riveros-Gómez, Daniela Zalazar-García, Inés María Ranea-Vera, Celina Podetti, María Paula Fabani, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 789; https://doi.org/10.3390/su18020789 - 13 Jan 2026
Viewed by 133
Abstract
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit [...] Read more.
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit (R2 > 0.99), enabling accurate prediction of moisture content removal while preserving bioactive compounds. Optimization via Box–Behnken design identified efficient extraction conditions (49.7–60 °C, 10 mL/g, 60 min), achieving lycopene equivalent (LE) yields of 3.07 to 5.00 mg/kg oil. Sunflower and blended oils showed comparable performance under maximum sonication power (240 W), with strong agreement between predicted and experimental yields. The process generated two valuable outputs: a functional lycopene-enriched oil and an exhausted carrot powder co-product, the latter retaining its crude fiber content despite other compositional changes. This research presents a scalable, green methodology that aligns with circular economy principles, transforming agro-industrial waste into functional food ingredients without organic solvents. Thus, the developed approach establishes a transferable model for the sustainable valorization of carotenoid-rich residues, contributing directly to greener food production systems. By providing a practical technological framework to convert waste into wealth, this work supports the fundamental transition toward a circular bioeconomy. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

19 pages, 4774 KB  
Article
Valorization of Orange Peels for Pectin Extraction from BARI Malta-1 (Sweet Orange): A Green Approach for Sustainable Utilization of Citrus Waste
by M. A. A. Shofi Uddin Sarkar, Md Murshed Bhuyan and Sharmeen Nishat
Polysaccharides 2026, 7(1), 8; https://doi.org/10.3390/polysaccharides7010008 - 12 Jan 2026
Viewed by 161
Abstract
The agro-industrial valorization of citrus waste represents a promising avenue to employ underutilized bioresources. This research investigated the potential of the peels of BARI malta 1 (sweet orange), a widely grown variety in Bangladesh, as a viable and new source for pectin extraction. [...] Read more.
The agro-industrial valorization of citrus waste represents a promising avenue to employ underutilized bioresources. This research investigated the potential of the peels of BARI malta 1 (sweet orange), a widely grown variety in Bangladesh, as a viable and new source for pectin extraction. Pectin is a polysaccharide, having extensive applications in the pharmaceuticals, cosmetics, and food business as a thickening, texturizer, emulsifier, gelling agent, and stabilizer. This study investigated the optimum extraction conditions for maximum yield, characterization, and physicochemical properties of the obtained pectin and compared the results with the pectin obtained from other sources. Comprehensive characterization through Fourier-Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), and Field Emission Scanning Electron Microscopy (FESEM) confirmed the structural identity, crystallinity, thermal stability, and morphological features of the extracted pectin. Physicochemical properties, including moisture content, ash content, equivalent weight, methoxyl content, and degree of esterification, indicate the suitability and superiority of the extracted pectin for industrial applications. This research approach not only supports eco-friendly processing of citrus waste but also opens avenue for circular economy initiatives in Bangladesh. Full article
Show Figures

Figure 1

17 pages, 1037 KB  
Article
Sustainable Production of Bioactive Chitosan from Fermented Rice Bran and Husk via Solid-State Fermentation
by Helena L. Gouvea, Meritaine da Rocha, Eliezer Q. Oreste, Sergiane C. Barbosa, Larine Kupski and Ednei G. Primel
Fermentation 2026, 12(1), 44; https://doi.org/10.3390/fermentation12010044 - 12 Jan 2026
Viewed by 262
Abstract
Sustainable production of high-quality chitosan from agro-industrial by-products remains a challenge in biotechnology. This study aimed to improve chitosan production from fermented rice bran and rice husk using Rhizopus oryzae in solid-state fermentation (SSF), and evaluated the physicochemical and biological properties of the [...] Read more.
Sustainable production of high-quality chitosan from agro-industrial by-products remains a challenge in biotechnology. This study aimed to improve chitosan production from fermented rice bran and rice husk using Rhizopus oryzae in solid-state fermentation (SSF), and evaluated the physicochemical and biological properties of the resulting biopolymer. A full factorial design (23) was applied to assess key fermentation parameters, including moisture content, substrate composition, and nitrogen supplementation. Among the tested conditions, the highest chitosan yield was at 55% moisture, 50% rice husk, and 1.8 g/L urea. The obtained chitosan was characterized for degree of deacetylation (DD) using FTIR and NMR, and molecular weight (MW) by viscometry. Antimicrobial activity was tested against Gram-positive and Gram-negative bacteria, and antioxidant capacity was measured via DPPH and ABTS assays. The chitosan exhibited a high DD (86.4 ± 0.6%) and a MW of 59.65 kDa, values comparable to commercial standards. It showed strong antimicrobial activity, particularly against Gram-negative strains. Antioxidant assays confirmed concentration-dependent activity, reaching 94% DPPH inhibition at 5.00 mg mL−1. Overall, the results demonstrate that agro-industrial residues can be effectively transformed into high-quality, bioactive chitosan, offering a sustainable and circular alternative to conventional production routes. Full article
Show Figures

Figure 1

16 pages, 2607 KB  
Review
Pleurotus ostreatus for Environmental Remediation and Sustainable Bioprocesses: An Evidence-Mapped Review of Research Gaps and Opportunities
by Luz Miryam Lozada-Martinez, Juan David Reyes-Duque, Yadira Marin-Hamburger and Ivan David Lozada-Martinez
J. Fungi 2026, 12(1), 54; https://doi.org/10.3390/jof12010054 - 12 Jan 2026
Viewed by 274
Abstract
Fungi have emerged as versatile biotechnological platforms for addressing environmental challenges with potential co-benefits for human health. Among them, Pleurotus ostreatus stands out for its ligninolytic enzyme systems (notably laccases), capacity to valorize lignocellulosic residues, and ability to form functional mycelial materials. We [...] Read more.
Fungi have emerged as versatile biotechnological platforms for addressing environmental challenges with potential co-benefits for human health. Among them, Pleurotus ostreatus stands out for its ligninolytic enzyme systems (notably laccases), capacity to valorize lignocellulosic residues, and ability to form functional mycelial materials. We conducted an evidence-mapped review, based on a bibliometric analysis of the Scopus corpus (2001–2025; 2085 records), to characterize research fronts and practical opportunities in environmental remediation and sustainable bioprocesses involving P. ostreatus. The mapped literature shows sustained growth and global engagement, with prominent themes in: (a) oxidative transformation of phenolic compounds, dyes and polycyclic aromatic hydrocarbons; (b) biodegradation/bioconversion of agro-industrial residues into value-added products; and (c) development of bio-based materials and processes aligned with the circular bioeconomy. We synthesize how these strands translate to real-world contexts, reducing contaminant loads, closing nutrient loops, and enabling low-cost processes that may indirectly reduce exposure-related risks. Key translational gaps persist: standardization of environmental endpoints, scale-up from laboratory to field, performance in complex matrices, life-cycle impacts and cost, ecotoxicological safety, and long-term monitoring. A practical agenda was proposed that prioritizes field-scale demonstrations with harmonized protocols, integration of life-cycle assessment and cost metrics, data sharing, and One Health frameworks linking environmental gains with plausible health co-benefits. In conclusion, P. ostreatus is a tractable platform organism for sustainable remediation and bio-manufacturing. This evidence map clarifies where the field is mature and where focused effort can accelerate the impact of future research. Full article
(This article belongs to the Special Issue Fungi Activity on Remediation of Polluted Environments, 2nd Edition)
Show Figures

Figure 1

15 pages, 1399 KB  
Article
Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis
by Grazia Cinardi, Provvidenza Rita D’Urso and Claudia Arcidiacono
AgriEngineering 2026, 8(1), 25; https://doi.org/10.3390/agriengineering8010025 - 9 Jan 2026
Viewed by 307
Abstract
Waste valorisation has become a key strategy for applying circular economy principles in the agro-industrial field. This study investigated the territorial implementation of the waste composting on a territorial scale. The wastes considered were the post-processing orange waste, spent olive oil pomace, and [...] Read more.
Waste valorisation has become a key strategy for applying circular economy principles in the agro-industrial field. This study investigated the territorial implementation of the waste composting on a territorial scale. The wastes considered were the post-processing orange waste, spent olive oil pomace, and spent wine grape pomace. Their potential use as soil amendments across the provinces of Sicily was assessed through a GIS-based analysis, taking into account nitrogen (N) application constraints. Moreover, a cascade valorisation scheme was also evaluated: post-processing orange waste was first used as animal feed, and the remaining fraction was directed to composting; olive pomace was first sent to pomace oil extraction mills, and the residual material was subsequently used for composting. Results indicate that N inputs derived from composted residues remain below legal thresholds in all provinces, with relative contributions ranging from 38% to 92% of the regulatory limits. Spatial variability in nitrogen availability reflects the territorial distribution of agro-industrial activities, highlighting the importance of localised management strategies. These findings demonstrate that composting, combined with cascade valorisation, is an effective pathway to close nutrient cycles, reduce waste generation, and support sustainable biomass management in regional agri-food systems. Full article
Show Figures

Figure 1

16 pages, 1685 KB  
Article
Pineapple-Derived Sodium Carboxymethylcellulose: Physicochemical Basis for Hydrogel Formulation
by Mateo Pérez-R, G. Orozco, A. González-Ruiz and Miriam V. Flores-Merino
Sci. Pharm. 2026, 94(1), 7; https://doi.org/10.3390/scipharm94010007 - 8 Jan 2026
Viewed by 490
Abstract
The synthesis of sodium carboxymethylcellulose (NaCMC) from lignocellulosic pineapple stubble provides a renewable alternative to conventional cellulose sources for pharmaceutical applications. This study aimed to obtain NaCMC from pineapple biomass, characterize it according to pharmacopoeial specifications, and formulate hydrogels as a physicochemical proof-of-concept [...] Read more.
The synthesis of sodium carboxymethylcellulose (NaCMC) from lignocellulosic pineapple stubble provides a renewable alternative to conventional cellulose sources for pharmaceutical applications. This study aimed to obtain NaCMC from pineapple biomass, characterize it according to pharmacopoeial specifications, and formulate hydrogels as a physicochemical proof-of-concept for future drug delivery and tissue regeneration applications. NaCMC was successfully synthesized and met the requirements of the Mexican Pharmacopoeia. Hydrogels were prepared by blending NaCMC with gelatin and crosslinking with citric acid. Spectroscopic, morphological, and thermal analyses confirmed the structural equivalence between pineapple-derived NaCMC (NaCMC-Pi) and commercial NaCMC (NaCMC-Co). Swelling and gel fraction studies showed that NaCMC-Pi hydrogels exhibited a higher gel fraction, indicating a more crosslinked network, which corresponded to lower swelling capacity but higher thermal stability compared to NaCMC-Co hydrogels. Overall, these results demonstrate that pineapple stubble is a viable source of pharmaceutical-grade NaCMC and that the resulting hydrogels provide a robust physicochemical basis for future biomedical validation. The use of agro-industrial residues additionally offers a complementary sustainability benefit without compromising pharmaceutical performance. Full article
Show Figures

Figure 1

16 pages, 449 KB  
Article
Diet-Driven Modulation of Antibiotic Resistance Genes and Microbial Risk During the Bioconversion of Agro-Industrial Residues by Hermetia illucens
by Vesna Milanović, Andrea Marcelli, Alessio Ilari, Giorgia Rampanti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Andrea Osimani, Cristiana Garofalo, Ester Foppa Pedretti and Lucia Aquilanti
Sci 2026, 8(1), 11; https://doi.org/10.3390/sci8010011 - 8 Jan 2026
Viewed by 143
Abstract
Background: Hermetia illucens larvae provide a sustainable bioconversion pathway that transforms agro-industrial residues into protein- and nutrient-dense biomass and frass, suitable for animal feed and soil amendment, respectively. Nevertheless, the potential spread of antibiotic resistance (AR) genes and pathogenic microorganisms poses biosafety [...] Read more.
Background: Hermetia illucens larvae provide a sustainable bioconversion pathway that transforms agro-industrial residues into protein- and nutrient-dense biomass and frass, suitable for animal feed and soil amendment, respectively. Nevertheless, the potential spread of antibiotic resistance (AR) genes and pathogenic microorganisms poses biosafety concerns. This study examined the impact of four residue-based diet formulations; peas and chickpea (D1), peas and wheat (D2), onion and wheat (D3), and wheat with digestate (D4), on microbial safety during the bioconversion process. Methods: Enterococcus spp. (viable counts), Salmonella spp. (presence/absence), and 13 AR genes associated with resistance to tetracyclines, macrolide-lincosamide-streptogramin B, β-lactams, vancomycin, and aminoglycosides were quantified in single substrates, diets, larvae, and frass using qPCR. Results: Principal component analysis revealed diet-driven AR gene profiles. D1 lowered the levels of the greatest number of tested AR genes, particularly erm(B), tetracycline, and β-lactam genes in frass, as well as tet(O) and vanB in mature larvae. In contrast, D2 increased the AR gene levels in frass. All diets except D4 eliminated Salmonella spp. Enterococcus spp. loads varied by diet and larval stage, with D2 reducing counts in frass. Conclusions: Diet composition directly shapes microbial dynamics and AR gene dissemination, indicating that legume-based substrates may enhance biosafety in bioconversion systems. Full article
Show Figures

Figure 1

20 pages, 873 KB  
Review
Enhancing Food Safety, Quality and Sustainability Through Biopesticide Production Under the Concept of Process Intensification
by Nathiely Ramírez-Guzmán, Mónica L. Chávez-González, Ayerim Y. Hernández-Almanza, Deepak K. Verma and Cristóbal N. Aguilar
Appl. Sci. 2026, 16(2), 644; https://doi.org/10.3390/app16020644 - 8 Jan 2026
Viewed by 253
Abstract
The worldwide population is anticipated to reach 10.12 billion by the year 2100, thereby amplifying the necessity for sustainable agricultural methodologies to secure food availability while reducing ecological consequences. Conventional synthetic pesticides, while capable of increasing crop yields by as much as 50%, [...] Read more.
The worldwide population is anticipated to reach 10.12 billion by the year 2100, thereby amplifying the necessity for sustainable agricultural methodologies to secure food availability while reducing ecological consequences. Conventional synthetic pesticides, while capable of increasing crop yields by as much as 50%, present considerable hazards such as toxicity, the emergence of resistance, and environmental pollution. This review examines biopesticides, originating from microbial (e.g., Bacillus thuringiensis, Trichoderma spp.), plant, or animal sources, as environmentally sustainable alternatives which address pest control through mechanisms including antibiosis, hyperparasitism, and competition. Biopesticides provide advantages such as biodegradability, minimal toxicity to non-target organisms, and a lower likelihood of resistance development. The global market for biopesticides is projected to be valued between USD 8 and 10 billion by 2025, accounting for 3–4% of the overall pesticide sector, and is expected to grow at a compound annual growth rate (CAGR) of 12–16%. To mitigate production costs, agro-industrial byproducts such as rice husk and starch wastewater can be utilized as economical substrates in both solid-state and submerged fermentation processes, which may lead to a reduction in expenses ranging from 35% to 59%. Strategies for process intensification, such as the implementation of intensified bioreactors, continuous cultivation methods, and artificial intelligence (AI)-driven monitoring systems, significantly improve the upstream stages (including strain development and fermentation), downstream processes (such as purification and drying), and formulation phases. These advancements result in enhanced productivity, reduced energy consumption, and greater product stability. Patent activity, exemplified by 2371 documents from 1982 to 2021, highlights advancements in formulations and microbial strains. The integration of circular economy principles in biopesticide production through process intensification enhances the safety, quality, and sustainability of food systems. Projections suggest that by the 2040s to 2050s, biopesticides may achieve market parity with synthetic alternatives. Obstacles encompass the alignment of regulations and the ability to scale in order to completely achieve these benefits. Full article
Show Figures

Figure 1

10 pages, 1994 KB  
Proceeding Paper
A Leptolyngbya-Dominated Consortium for the Optimized Biological Treatment of Mixed Agro-Industrial Effluents
by Vasiliki Patrinou, Dimitris V. Vayenas and Athanasia G. Tekerlekopoulou
Eng. Proc. 2025, 117(1), 17; https://doi.org/10.3390/engproc2025117017 - 7 Jan 2026
Viewed by 278
Abstract
Many individual wastewater streams exhibit imbalanced or poor nutrient profiles, limiting their suitability for efficient biological treatment. In regions where several agro-industrial activities coexist, these streams are often produced in small volumes and vary considerably in composition, making their combined use an effective [...] Read more.
Many individual wastewater streams exhibit imbalanced or poor nutrient profiles, limiting their suitability for efficient biological treatment. In regions where several agro-industrial activities coexist, these streams are often produced in small volumes and vary considerably in composition, making their combined use an effective way to obtain a more balanced influent. This study aimed to identify the optimal mixing ratio of two agro-industrial wastewaters, second cheese whey (SCW) and poultry wastewater (PW), for the cultivation of a Leptolyngbya-dominated consortium. Four mixing ratios of SCW:PW (50:50%, 60:40%, 70:30%, and 85:15%) were examined based on an initial dissolved chemical oxygen demand (d-COD) concentration of 3000 mg L−1. The 70:30% ratio was led to significant biomass production (268.3 mg L−1 d−1), while simultaneously exhibiting the highest lipid content (14.0% d.w.), and the highest removal of d-COD (89.2%), total nitrogen (64%) and PO43−-P (60%). Overall, the experiments showed that using nutritionally balanced wastewater streams is a promising strategy to enhance biological treatment efficiency and lipid production. Full article
Show Figures

Figure 1

Back to TopTop