Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis
Abstract
1. Introduction
2. Materials and Methods
- -
- data collection: acquisition of quantitative data on regional agricultural production (wine, orange-processed products, and olive oil) from official statistical sources and sectoral databases.
- -
- estimation of by-products: calculation of quantities of by-products generated using specific yield coefficients validated in the literature;
- -
- analysis of potential uses: assessment of the potential use of by-products for animal feed and composting, with reference to animal nutritional parameters and fertilisation needs.
- -
- spatial analysis with GIS involves georeferencing the collected data and integrating it into a GIS environment to identify areas with the greatest by-product availability and possible logistical connections with recovery plants.
2.1. Data Collection
2.1.1. Grape By-Products
2.1.2. Olive By-Products
- -
- extraction technology (i.e., two- or three-phase system);
- -
- cultivar (e.g., Sicilian varieties such as Nocellara or Biancolilla have different yields);
- -
- state of ripeness of the olive;
- -
- moisture content of the fruit.
2.1.3. Orange-Processing By-Products
2.2. Estimation of Biomass Uses, for Bovine Nutrition
2.3. Estimating the N from Biomasses Residues of Agro-Industrial Activities
2.4. Study of Nitrate Vulnerable Zone (NVZ)
2.5. Estimation of N Max to Be Spread on Agricultural Land for Every Province: Law Limitations
3. Results
3.1. Input Data Collected and By-Product Calculation
3.2. Estimating the Amount of N from Biomass Residues from Agro-Industrial Activities
3.3. N Management in Agricultural Lands Under NVZ Restriction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatia, T.; Sindhu, S.S. Sustainable Management of Organic Agricultural Wastes: Contributions in Nutrients Availability, Pollution Mitigation and Crop Production. Discov. Agric. 2024, 2, 130. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H. Assessing Agri-Food Waste Valorization Challenges and Solutions Considering Smart Technologies: An Integrated Fermatean Fuzzy Multi-Criteria Decision-Making Approach. Sustainability 2024, 16, 6169. [Google Scholar] [CrossRef]
- Midolo, G.; Cutuli, G.; Porto, S.M.C.; Ottolina, G.; Paini, J.; Valenti, F. LCA Analysis for Assessing Environmenstal Sustainability of New Biobased Chemicals by Valorising Citrus Waste. Sci. Rep. 2024, 14, 21418. [Google Scholar] [CrossRef] [PubMed]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Bassi, D.; Cirilli, M.; Rossini, L. The Most Important Fruit Crops in Mediterranean Basin (Mb): Position Paper; Milano University Press: Milan, Italy, 2024; ISBN 979-12-5510-109-3. [Google Scholar]
- FAO. The State of Food and Agriculture 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136043-9. [Google Scholar]
- ISMEA. ISMEA Citrus Report, 2024; ISMEA: Rome, Italy, 2024. [Google Scholar]
- Sicilia Report Sicilia Tra Le Principali Regioni Italiane per Produzione Olio d’oliva. Available online: https://www.italpress.com/sicilia-tra-le-principali-regioni-italiane-per-produzione-olio-doliva/ (accessed on 30 July 2025).
- Sicilia Agricoltura. Cultivating the Future: La Sicilia del Vino Si Raccon. 2024. Available online: https://www.assovinisicilia.it/cultivating-the-future-la-sicilia-del-vino-si-racconta/ (accessed on 30 July 2025).
- Cinardi, G.; D’Urso, P.R.; Arcidiacono, C.; Ingrao, C. Accounting for Circular Economy Principles in Life Cycle Assessments of Extra-Virgin Olive Oil Supply Chains—Findings from a Systematic Literature Review. Sci. Total Environ. 2024, 945, 173977. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of Citrus Processing Waste: A Review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef]
- Castagna, A.; Aboudia, A.; Guendouz, A.; Scieuzo, C.; Falabella, P.; Matthes, J.; Schmid, M.; Drissner, D.; Allais, F.; Chadni, M.; et al. Transforming Agricultural Waste from Mediterranean Fruits into Renewable Materials and Products with a Circular and Digital Approach. Materials 2025, 18, 1464. [Google Scholar] [CrossRef]
- Negrea, M.; Cocan, I.; Jianu, C.; Alexa, E.; Berbecea, A.; Poiana, M.-A.; Silivasan, M. Valorization of Citrus Peel Byproducts: A Sustainable Approach to Nutrient-Rich Jam Production. Foods 2025, 14, 1339. [Google Scholar] [CrossRef]
- Hartinger, T.; Mahmood, M.; Khiaosa-ard, R. The Impact of Citrus Pulp Inclusion on Milk Performance of Dairy Cows: A Meta-Analysis. Food Chem. Mol. Sci. 2024, 9, 100216. [Google Scholar] [CrossRef]
- Girard, G. Does Circular Bioeconomy Contain Singular Social Science Research Questions, Especially Regarding Agriculture—Industry Nexus? Clean. Circ. Bioecon. 2022, 3, 100030. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale Della Repubblica Italiana. Legislative Decree No. 75 of 29 April 2010; State Polygraphic Institute and Mint: Roma, Italy, 2010. [Google Scholar]
- Official Journal of the European Union. Regulation (EU) 2019/1009 on EU Fertilising Products 2019/1009; The European Union: Brussels, Belgium, 2019. [Google Scholar]
- Cillis, G.; Statuto, D.; Schettini, E.; Vox, G.; Picuno, P. Implementing a GIS-Based Digital Atlas of Agricultural Plastics to Reduce Their Environmental Footprint; Part I: A Deductive Approach. Appl. Sci. 2022, 12, 1330. [Google Scholar] [CrossRef]
- Lycourghiotis, S. GIS and Spatial Analysis in the Utilization of Residual Biomass for Biofuel Production. J 2025, 8, 17. [Google Scholar] [CrossRef]
- Haase, M.; Rösch, C.; Ketzer, D. GIS-Based Assessment of Sustainable Crop Residue Potentials in European Regions. Biomass Bioenergy 2016, 86, 156–171. [Google Scholar] [CrossRef]
- Beccali, M.; Columba, P.; D’Alberti, V.; Franzitta, V. Assessment of Bioenergy Potential in Sicily: A GIS-Based Support Methodology. Biomass Bioenergy 2009, 33, 79–87. [Google Scholar] [CrossRef]
- Valenti, F.; Liao, W.; Porto, S.M. A GIS-Based Spatial Index of Feedstock-Mixture Availability for Anaerobic Co-Digestion of Mediterranean by-Products and Agricultural Residues. Biofuels Bioprod. Biorefining 2018, 12, 362–378. [Google Scholar] [CrossRef]
- Catalano, G.A.; D’Urso, P.R.; Arcidiacono, C. Predicting Potential Biomass Production by Geospatial Modelling: The Case Study of Citrus in a Mediterranean Area. Ecol. Inform. 2024, 83, 102848. [Google Scholar] [CrossRef]
- Raihan, A. A Systematic Review of Geographic Information Systems (GIS) in Agriculture for Evidence-Based Decision Making and Sustainability. Glob. Sustain. Res. 2024, 3, 1–24. [Google Scholar] [CrossRef]
- Official Gazette of the Italian Republic. Legislative Decree No. 152 of 3 April 2006 Environmental Regulations 152/2006; State Polygraphic Institute and Mint: Rome, Italy, 2006. [Google Scholar]
- Abreu, T.; Sousa, P.; Gonçalves, J.; Hontman, N.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages 2024, 10, 45. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G. Grape Pomace. Feed. Anim. Feed Resour. Inf. Syst. 2020. [Google Scholar]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- ENAMA. ENAMA Biomass Technical Commission Biomass Project—Technical Characteristics of Biomass and Biofuels; ENAMA Biomass Project; Ministry of Agricultural, Food and Forestry Policies (MIPAAF): Roma, Italy, 2011. [Google Scholar]
- Valenti, F.; Porto, S.M.C.; Chinnici, G.; Selvaggi, R.; Cascone, G.; Arcidiacono, C.; Pecorino, B. Use of Citrus Pulp for Biogas Production: A GIS Analysis of Citrus-Growing Areas and Processing Industries in South Italy. Land Use Policy 2017, 66, 151–161. [Google Scholar] [CrossRef]
- Gulisano, G.; Careri, P.; Strano, A. Il Pastazzo Di Agrumi va Bene Nella Dieta Di Bovini e Ovini. Inf. Agrar. 2008, 28, 28–29. [Google Scholar]
- Tawarah, K.M. Specifications of Exhausted Olive Pomace as an Energy Source: A Statistical Approach. Int. J. Adv. Res. Chem. Sci. 2019, 6, 6–15. [Google Scholar] [CrossRef]
- Yang, X.; Liu, E.; Zhu, X.; Wang, H.; Liu, H.; Liu, X.; Dong, W. Impact of Composting Methods on Nitrogen Retention and Losses during Dairy Manure Composting. Int. J. Environ. Res. Public. Health 2019, 16, 3324. [Google Scholar] [CrossRef]
- Zhao, S.; Schmidt, S.; Qin, W.; Li, J.; Li, G.; Zhang, W. Towards the Circular Nitrogen Economy—A Global Meta-Analysis of Composting Technologies Reveals Much Potential for Mitigating Nitrogen Losses. Sci. Total Environ. 2020, 704, 135401. [Google Scholar] [CrossRef]
- Official Journal of the European Communities. Council Directive 91/676/ECC Concerning the Protection of Waters against Pollution Caused b Nitrates from Agricultural Sources 91/676/ECC; The European Union: Brussels, Belgium, 1991. [Google Scholar]
- Official Gazette of the Italian Republic. Ministerial Decree of 19 April 1999; State Polygraphic Institute and Mint: Rome, Italy, 1999. [Google Scholar]
- Region of Sicily Zones Vulnerable to Agricultural Nitrates. Available online: https://www.sitr.regione.sicilia.it/download/download-carta-tecnica-regionale-10000/ata1213-shape/ (accessed on 3 June 2025).
- Criteria and General Technical Standards for the Regional Regulation of the Agronomic Use of Livestock Effluents and Zootechnical Waste Pursuant to Art. 112 of Legislative Decree No. 152 of 3 April 2006, as Well as for the Production and Agronomic Use of Digestate Pursuant to Art. 52, Paragraph 2-Bis of Decree Law No. 83 of 22 June 2012, Converted into Law No. 134 of 7 August 2012, No. 5046 of 25 February.
- Salomone, R.; Ioppolo, G. Environmental Impacts of Olive Oil Production: A Life Cycle Assessment Case Study in the Province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88–100. [Google Scholar] [CrossRef]
- Negro, V.; Mancini, G.; Ruggeri, B.; Fino, D. Citrus Waste as Feedstock for Bio-Based Products Recovery: Review on Limonene Case Study and Energy Valorization. Bioresour. Technol. 2016, 214, 806–815. [Google Scholar] [CrossRef]
- Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. Life Cycle Assessment of Orange Peel Waste Management. Resour. Conserv. Recycl. 2017, 127, 148–158. [Google Scholar] [CrossRef]
- Cinardi, G.; D’Urso, P.R.; Cascone, G.; Arcidiacono, C. Citrus Waste Valorisation Processes from an Environmental Sustainability Perspective: A Scoping Literature Review of Life Cycle Assessment Studies. AgriEngineering 2025, 7, 335. [Google Scholar] [CrossRef]
- Fernández, C.; Romero, T.; Martí, J.V.; Moya, V.J.; Hernando, I.; Loor, J.J. Energy, Nitrogen Partitioning, and Methane Emissions in Dairy Goats Differ When an Isoenergetic and Isoproteic Diet Contained Orange Leaves and Rice Straw Crop Residues. J. Dairy Sci. 2021, 104, 7830–7844. [Google Scholar] [CrossRef] [PubMed]
- Cinardi, G.; Vitaliano, S.; Fasciana, A.; Fragalà, F.; La Bella, E.; Santoro, L.M.; D’Urso, P.R.; Baglieri, A.; Cascone, G.; Arcidiacono, C. Preliminary Analysis on Bio-Acidification Using Coffee Torrefaction Waste and Acetic Acid on Animal Manure from a Dairy Farm. Agriculture 2025, 15, 948. [Google Scholar] [CrossRef]
- Amlinger, F.; Götz, B.; Dreher, P.; Geszti, J.; Weissteiner, C. Nitrogen in Biowaste and Yard Waste Compost: Dynamics of Mobilisation and Availability—A Review. Eur. J. Soil Biol. 2003, 39, 107–116. [Google Scholar] [CrossRef]
- Pinter, I.F.; Fernández, A.S.; Martínez, L.E.; Riera, N.; Fernández, M.; Aguado, G.D.; Uliarte, E.M. Exhausted Grape Marc and Organic Residues Composting with Polyethylene Cover: Process and Quality Evaluation as Plant Substrate. J. Environ. Manag. 2019, 246, 695–705. [Google Scholar] [CrossRef]
- Gazal, A.A.; Bonnet, S.; Silalertruksa, T.; Gheewala, S.H. Circular Economy Strategies for Agri-Food Production—A Review. Circ. Econ. Sustain. 2025, 5, 2467–2493. [Google Scholar] [CrossRef]
- Jeong, Y.-J.; Vyavahare, G.D.; Kim, S.-H.; Jeon, S.-H.; Roh, A.-S.; Yun, J.-J.; Shim, J.-H. Effect of Fertilizer and Food Waste Compost on Soil Carbon, Nitrogen Use Efficiency, and Yield of Chinese Cabbage (Brassica rapa L.). Appl. Biol. Chem. 2025, 68, 77. [Google Scholar] [CrossRef]
- Cinardi, G.; D’Urso, P.R.; Arcidiacono, C. Integrating Rooftop Grid-Connected Photovoltaic and Battery Systems to Reduce Environmental Impacts in Agro-Industrial Activities with a Focus on Extra Virgin Olive Oil Production. Clean Technol. 2025, 7, 91. [Google Scholar] [CrossRef]
- Cinardi, G.; D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Integrating Photovoltaic Systems to Reduce Carbon Footprint in Extra Virgin Olive Oil Production: A Territorial Perspective in the Mediterranean Area. In Biosystems Engineering Promoting Resilience to Climate Change—AIIA 2024—Mid-Term Conference ; Sartori, L., Tarolli, P., Guerrini, L., Zuecco, G., Pezzuolo, A., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Cham, Switzerland, 2025; Volume 586, pp. 999–1007. ISBN 978-3-031-84211-5. [Google Scholar]




| Production (100 kg)/Area (ha) | Wine Grapes | Citrus | Olive for Oil |
|---|---|---|---|
| Agrigento | 58 | 179 | 15 |
| Caltanissetta | 81 | 156 | 10 |
| Catania | 70 | 175 | 34 |
| Enna | 70 | 300 | 50 |
| Messina | 81 | 196 | 17 |
| Palermo | 51 | 188 | 26 |
| Ragusa | 77 | 311 | 49 |
| Syracuse | 78 | 214 | 21 |
| Trapani | 53 | 96 | 23 |
| Province | Olive Pomace (100 kg) | Exhausted Grape Pomace (100 kg) | Orange Waste (100 kg) |
|---|---|---|---|
| Agrigento | 727 | 1506 | 2173 |
| Caltanissetta | 184 | 276 | 0 |
| Catania | 1021 | 102 | 9866 |
| Enna | 1275 | 15 | 2026 |
| Messina | 1369 | 113 | 906 |
| Palermo | 1267 | 542 | 0 |
| Ragusa | 314 | 64 | 0 |
| Syracuse | 420 | 132 | 8455 |
| Trapani | 955 | 1950 | 0 |
| Province | Olive Pomace (100 kg) | Grape Pomace (100 kg) | Citrus Pulp (100 kg) |
|---|---|---|---|
| Agrigento | 499 | 1033 | 1490 |
| Caltanissetta | 127 | 190 | 0 |
| Catania | 700 | 70 | 6768 |
| Enna | 874 | 10 | 1390 |
| Messina | 939 | 77 | 622 |
| Palermo | 869 | 372 | 0 |
| Ragusa | 216 | 44 | 0 |
| Syracuse | 288 | 91 | 5800 |
| Trapani | 655 | 1338 | 0 |
| Province | NVZ (ha) | Area (ha) | NVZp [%] |
|---|---|---|---|
| Agrigento | 24,235 | 305,590 | 7.9 |
| Caltanissetta | 38,258 | 213,421 | 17.9 |
| Catania | 159,419 | 357,536 | 44.6 |
| Enna | 13,696 | 257,292 | 5.3 |
| Messina | 25,346 | 326,606 | 7.8 |
| Palermo | 5115 | 500,506 | 1.0 |
| Ragusa | 53,831 | 162,360 | 33.2 |
| Syracuse | 47,059 | 212,181 | 22.2 |
| Trapani | 49,950 | 246,941 | 20.2 |
| Province | Nmax Tot (t) | N Available (t) | N Residual (t) | |
|---|---|---|---|---|
| Wine grape | Agrigento | 12,142.2 | 103.5 | 12,038.7 |
| Caltanissetta | 1529.1 | 19.0 | 1510.1 | |
| Catania | 557.7 | 7.0 | 550.7 | |
| Enna | 102.6 | 1.0 | 101.6 | |
| Messina | 653.6 | 7.8 | 645.9 | |
| Palermo | 5178.8 | 37.3 | 5141.5 | |
| Ragusa | 342.3 | 4.4 | 337.9 | |
| Syracusa | 740.6 | 9.1 | 731.5 | |
| Trapani | 16,044.7 | 134.1 | 15,910.6 | |
| Orange waste | Agrigento | 1807.3 | 149.0 | 1658.2 |
| Caltanissetta | 53.2 | 0.0 | 53.2 | |
| Catania | 6745.0 | 676.8 | 6068.2 | |
| Enna | 960.1 | 139.0 | 821.1 | |
| Messina | 980.4 | 62.2 | 918.3 | |
| Palermo | 115.0 | 0.0 | 115.0 | |
| Ragusa | 198.5 | 0.0 | 198.5 | |
| Syracusa | 5139.0 | 580.0 | 4559.0 | |
| Trapani | 61.1 | 0.0 | 61.1 | |
| Olive for oil | Agrigento | 7175.2 | 49.9 | 7125.3 |
| Caltanissetta | 2530.7 | 12.7 | 2518.0 | |
| Catania | 3537.6 | 70.0 | 3467.6 | |
| Enna | 3716.2 | 87.4 | 3628.8 | |
| Messina | 11,765.1 | 93.9 | 11,671.2 | |
| Palermo | 7205.0 | 86.9 | 7118.1 | |
| Ragusa | 850.9 | 21.6 | 829.4 | |
| Syracusa | 2720.7 | 28.8 | 2691.9 | |
| Trapani | 5806.7 | 65.5 | 5741.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cinardi, G.; D’Urso, P.R.; Arcidiacono, C. Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis. AgriEngineering 2026, 8, 25. https://doi.org/10.3390/agriengineering8010025
Cinardi G, D’Urso PR, Arcidiacono C. Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis. AgriEngineering. 2026; 8(1):25. https://doi.org/10.3390/agriengineering8010025
Chicago/Turabian StyleCinardi, Grazia, Provvidenza Rita D’Urso, and Claudia Arcidiacono. 2026. "Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis" AgriEngineering 8, no. 1: 25. https://doi.org/10.3390/agriengineering8010025
APA StyleCinardi, G., D’Urso, P. R., & Arcidiacono, C. (2026). Strategies for Wine, Orange Processing and Olive Oil By-Product Valorisation Based on GIS Spatial Analysis. AgriEngineering, 8(1), 25. https://doi.org/10.3390/agriengineering8010025

