You are currently on the new version of our website. Access the old version .
HorticulturaeHorticulturae
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

17 January 2026

Phytochemical Composition and Bioactivity of Different Fruit Parts of Opuntia robusta and Opuntia ficus-indica: Conventional Versus NADES-Based Extraction

,
,
,
,
,
,
,
and
1
Plant Biotechnology Team, Biology Department, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
2
MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
3
Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Rancho de la Merced Center, Carretera Cañada de la Loba (CA-3102) Km 3.1., SN, 11471 Jerez de la Frontera, Spain
4
Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Center, Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain
Horticulturae2026, 12(1), 98;https://doi.org/10.3390/horticulturae12010098 
(registering DOI)
This article belongs to the Section Developmental Physiology, Biochemistry, and Molecular Biology

Abstract

This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in comparison with 50% methanol. Phytochemical profiling was performed using ultra-high-performance liquid chromatography–high-resolution mass spectrometry, alongside antioxidant and enzyme inhibition assessments (acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-glucosidase, and α-amylase). Glycerol–urea performed similarly to methanol in extracting phenolic compounds with notable antioxidant properties. Peel extracts contained the highest levels of bioactive compounds, particularly phenolic acids (525.49 in O. robusta and 362.96 µg/gDW in O. ficus indica). Enzyme inhibition varied across species and fruit parts, with extracts from both species inhibiting all targeted enzymes. Notably, this study provides the first evidence of tyrosinase inhibitory activity in O. robusta, which exhibited the strongest inhibition. Overall, these results emphasize the potential of cactus fruit extracts, particularly from O. robusta, for valorization, and support the use of NADESs as a sustainable and medium for extracting antioxidant compounds. Furthermore, the potential of fruit peel as waste with nutraceutical applications was demonstrated.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.