Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (895)

Search Parameters:
Keywords = agricultural facilities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2281 KB  
Article
Pore-Structure Modulation of Macadamia Shell-Derived Hard Carbon for High-Performance Sodium-Ion Battery Anodes
by Xiaoran Wang, Keren Luo, Yanling Zhang and Hao Wu
Processes 2026, 14(3), 419; https://doi.org/10.3390/pr14030419 (registering DOI) - 25 Jan 2026
Abstract
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating [...] Read more.
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating ZnCl2-modified hard carbon (HCMZ-X) using waste macadamia shells and ZnCl2 as a multifunctional structural modifier through a facile high-temperature carbonization. This approach effectively expands the graphite interlayer spacing to 0.394 nm, reduces microcrystalline size, and induces abundant closed pores, synergistically improving sodium-ion storage kinetics within the hard carbon framework. Mechanistic investigations confirm an “adsorption-intercalation-filling” storage mechanism. Hence, the optimized HCMZ-3 delivers a high reversible capacity of 382.05 mAh g−1 at 0.05 A g−1, with the plateau region contributing approximately 70%, significantly outperforming that of unmodified hard carbon (262.64 mAh g−1). Remarkably, it achieves stable rate performance, delivering 190 mAh g−1 at 1 A g−1, along with excellent cycling stability, retaining over 90% after 500 cycles. By rational pore-structure modulation rather than excessive surface activation, this cost-effective method utilizing agricultural waste and ZnCl2 dual-functional modification partially alleviates the intrinsic energy-density limitation of hard carbon anodes, advancing the development of high-performance, eco-friendly anodes for scalable energy storage systems. Full article
Show Figures

Figure 1

27 pages, 23394 KB  
Article
YOLO-MSRF: A Multimodal Segmentation and Refinement Framework for Tomato Fruit Detection and Segmentation with Count and Size Estimation Under Complex Illumination
by Ao Li, Chunrui Wang, Aichen Wang, Jianpeng Sun, Fengwei Gu and Tianxue Zhang
Agriculture 2026, 16(2), 277; https://doi.org/10.3390/agriculture16020277 - 22 Jan 2026
Viewed by 23
Abstract
Segmentation of tomato fruits under complex lighting conditions remains technically challenging, especially in low illumination or overexposure, where RGB-only methods often suffer from blurred boundaries and missed small or occluded instances, and simple multimodal fusion cannot fully exploit complementary cues. To address these [...] Read more.
Segmentation of tomato fruits under complex lighting conditions remains technically challenging, especially in low illumination or overexposure, where RGB-only methods often suffer from blurred boundaries and missed small or occluded instances, and simple multimodal fusion cannot fully exploit complementary cues. To address these gaps, we propose YOLO-MSRF, a lightweight RGB–NIR multimodal segmentation and refinement framework for robust tomato perception in facility agriculture. Firstly, we propose a dual-branch multimodal backbone, introduce Cross-Modality Difference Complement Fusion (C-MDCF) for difference-based complementary RGB–NIR fusion, and design C2f-DCB to reduce computation while strengthening feature extraction. Furthermore, we develop a cross-scale attention fusion network and introduce the proposed MS-CPAM to jointly model multi-scale channel and position cues, strengthening fine-grained detail representation and spatial context aggregation for small and occluded tomatoes. Finally, we design the Multi-Scale Fusion and Semantic Refinement Network, MSF-SRNet, which combines the Scale-Concatenate Fusion Module (Scale-Concat) fusion with SDI-based cross-layer detail injection to progressively align and refine multi-scale features, improving representation quality and segmentation accuracy. Extensive experiments show that YOLO-MSRF achieves substantial gains under weak and low-light conditions, where RGB-only models are most prone to boundary degradation and missed instances, and it still delivers consistent improvements on the mixed four-light validation set, increasing mAP0.5 by 2.3 points, mAP0.50.95 by 2.4 points, and mIoU by 3.60 points while maintaining real-time inference at 105.07 FPS. The proposed system further supports counting, size estimation, and maturity analysis of harvestable tomatoes, and can be integrated with depth sensing and yield estimation to enable real-time yield prediction in practical greenhouse operations. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

14 pages, 487 KB  
Article
A Life Cycle Costing of a Composting Facility for Agricultural Waste of Plant and Animal Origin in Southeastern Spain
by José García García, Begoña García Castellanos, Raúl Moral Herrero, Francisco Javier Andreu-Rodríguez and Ana García-Rández
Agriculture 2026, 16(2), 273; https://doi.org/10.3390/agriculture16020273 - 21 Jan 2026
Viewed by 50
Abstract
This study is an economic evaluation of a composting facility in southeastern Spain (applying Life Cycle Costing), a key region in European horticulture with a significant availability of agricultural biomass. Composting helps reduce dependence on inorganic fertilizers, aligning with European policies that promote [...] Read more.
This study is an economic evaluation of a composting facility in southeastern Spain (applying Life Cycle Costing), a key region in European horticulture with a significant availability of agricultural biomass. Composting helps reduce dependence on inorganic fertilizers, aligning with European policies that promote the transition toward organic fertilization practices. In addition, compost enhances soil health, increases soil organic carbon, and supports climate change mitigation. Despite its agronomic and environmental benefits, and the large availability of biomass in this region, there is a notable lack of literature addressing the economic costs of composting, which is the first step in assessing the sustainability of a production process. The proposed facility (production: 9000 tonnes of compost per year) utilizes pruning residues and manure to produce high-quality organic amendments. The analysis includes infrastructure, equipment, and every operational input. Likewise, the analysis also provides socio-economic indicators such as employment generation and contribution to the regional economy. Three scenarios were evaluated based on the pruning–shredding location: at the plant, at the farm with mobile equipment, and at the farm with conventional machinery. The most cost-effective option was shredding at the farm using mobile equipment, reducing the unit cost to EUR 65.19 per tonne due to the transport of a smaller volume of prunings and, therefore, lower fuel consumption. The plant also demonstrates high productivity per square metre and generates stable employment in rural areas. Overall, the findings highlight composting as a viable and competitive strategy within circular and low-carbon agricultural systems. Full article
Show Figures

Figure 1

23 pages, 6703 KB  
Article
The Role of Urban Gardening in the Maintenance of Rural Landscape Heritage in a Large City: Case Study of Brno Metropolitan Area, Czech Republic
by Jaromír Kolejka, Eva Novakova and Jana Zapletalova
Land 2026, 15(1), 192; https://doi.org/10.3390/land15010192 - 21 Jan 2026
Viewed by 98
Abstract
The territorial development of the city of Brno during the 19th–21st centuries meant not only the growth of built-up areas (residential, industrial, commercial), but also the absorbing of segments of the ancient rural agricultural landscape. Within the current borders of the city of [...] Read more.
The territorial development of the city of Brno during the 19th–21st centuries meant not only the growth of built-up areas (residential, industrial, commercial), but also the absorbing of segments of the ancient rural agricultural landscape. Within the current borders of the city of Brno, a number of green areas have been preserved, which have spontaneously developed from the original agricultural landscape, without being the result of urban planning. In half of the cases (17 out of a total of 34), they have still preserved the traditional small-scale division of land. Among the 10 medium-sized Moravian cities (between 30,000 and 400,000 inhabitants) in the historical region of Moravia in the east of the Czech Republic, the presence of 34 remnants of the ancient rural landscape in the city of Brno is quite exceptional (in Ostrava only 1; in other cities 0). The subject of the research is the inventory of such segments within the city borders and an attempt to explain their location in the city, state, focusing on the role of natural factors, land ownership and personal and recreational interests of residents. Segments of the ancient rural cultural landscape were identified by comparing the current landscape on aerial photographs with the landscape image on cadastral maps from the 1820s–1830s. Additional data on their natural and cultural properties were obtained through archival and field research. The segments were classified according to their degree of preservation and forms of threat. The results show that the remains of the ancient rural cultural landscape in the city of Brno have generally been preserved in locations that, due to the slope of the slopes, unsuitable building subsoil and poor soil, but locally on warm southern slopes, were not suitable for construction for the time being. Urban gardening contributes to their preservation and these areas are part of the city’s greenery. However, urban gardening also contributes to the destruction of these remnants. In 17 cases, the land was completely re-divided, built up with recreational facilities and overgrown with trees due to poor care. Another 17 locations are threatened by this process due to ignorance of their historical value, although this is essentially a positive development in terms of benefits for the city’s residents—land users. Although the Master Plan of the city of Brno foresees the existence of garden colonies in the future, it does not address the importance of the best-preserved segments as historical heritage. Community agriculture can play a positive role in maintaining segments of rural heritage within the city. Full article
(This article belongs to the Special Issue Heritage Landscapes, Their Inventory, Management and Future)
Show Figures

Figure 1

22 pages, 5927 KB  
Article
Research on a Temperature and Humidity Prediction Model for Greenhouse Tomato Based on iT-LSTM-CA
by Yanan Gao, Pingzeng Liu, Yuxuan Zhang, Fengyu Li, Ke Zhu, Yan Zhang and Shiwei Xu
Sustainability 2026, 18(2), 930; https://doi.org/10.3390/su18020930 - 16 Jan 2026
Viewed by 149
Abstract
Constructing a temperature and humidity prediction model for greenhouse-grown tomatoes is of great significance for achieving resource-efficient and sustainable greenhouse environmental control and promoting healthy tomato growth. However, traditional models often struggle to simultaneously capture long-term temporal trends, short-term local dynamic variations, and [...] Read more.
Constructing a temperature and humidity prediction model for greenhouse-grown tomatoes is of great significance for achieving resource-efficient and sustainable greenhouse environmental control and promoting healthy tomato growth. However, traditional models often struggle to simultaneously capture long-term temporal trends, short-term local dynamic variations, and the coupling relationships among multiple variables. To address these issues, this study develops an iT-LSTM-CA multi-step prediction model, in which the inverted Transformer (iTransformer, iT) is employed to capture global dependencies across variables and long temporal scales, the Long Short-Term Memory (LSTM) network is utilized to extract short-term local variation patterns, and a cross-attention (CA) mechanism is introduced to dynamically fuse the two types of features. Experimental results show that, compared with models such as Gated Recurrent Unit (GRU), Temporal Convolutional Network (TCN), Recurrent Neural Network (RNN), LSTM, and Bidirectional Long Short-Term Memory (Bi-LSTM), the iT-LSTM-CA achieves the best performance in multi-step forecasting tasks at 3 h, 6 h, 12 h, and 24 h horizons. For temperature prediction, the R2 ranges from 0.96 to 0.98, with MAE between 0.42 °C and 0.79 °C and RMSE between 0.58 °C and 1.06 °C; for humidity prediction, the R2 ranges from 0.95 to 0.97, with MAE between 1.21% and 2.49% and RMSE between 1.78% and 3.42%. These results indicate that the iT-LSTM-CA model can effectively capture greenhouse environmental variations and provide a scientific basis for environmental control and management in tomato greenhouses. Full article
Show Figures

Figure 1

20 pages, 7204 KB  
Article
Climate-Based Natural Suitability Index (CNSI) for Blueberry Cultivation in China: Spatiotemporal Evolution and Influencing Factors
by Yixuan Feng, Jing Chen, Jiayi Liu, Xinchun Wang, Jinying Li, Ying Wang, Junnan Wu, Lin Wu and Yanan Li
Agronomy 2026, 16(2), 211; https://doi.org/10.3390/agronomy16020211 - 15 Jan 2026
Viewed by 204
Abstract
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector [...] Read more.
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector analysis, this study examines the spatiotemporal evolution and driving mechanisms of blueberry climatic suitability realization in 19 major producing provinces in China during 2008–2023. Results show that CNSI exhibits a stable and moderately right-skewed distribution, with partial convergence and a narrowing interprovincial gap. Suitability realization is highest in the middle and lower Yangtze River rice-growing belt, whereas the northern dryland belt and the southern subtropical mountainous belt show persistent mismatches between climatic potential and production advantages. Markov results reveal path dependence and moderate mobility, with “low–low lock-in” and “high–high club” phenomena reinforced under neighborhood effects. GeoDetector results indicate that effective facility irrigation and fertilizer input are dominant factors explaining spatial variation in CNSI, while comprehensive transportation accessibility and agricultural labor act as stable complements. Interaction analysis suggests that multi-factor synergies, particularly irrigation-centered combinations, yield strong dual-factor enhancement and near-nonlinear enhancement. These findings highlight the importance of aligning climatic suitability with adaptive infrastructure investment and region-specific management to promote sustainable production-share advantages in China’s blueberry industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 4642 KB  
Communication
Sustainable Management of Potato Tuber Moths Using Eco-Friendly Dust Formulations During Storage in the Andean Highlands
by Alex Villanueva, Fernando Escobal, Héctor Cántaro-Segura, Luis Diaz-Morales and Daniel Matsusaka
Insects 2026, 17(1), 86; https://doi.org/10.3390/insects17010086 - 13 Jan 2026
Viewed by 319
Abstract
Postharvest losses caused by potato tuber moths severely impact storage in the Andean highlands, where reliance on synthetic insecticides poses sustainability and safety concerns. This study evaluated eco-friendly alternatives for protecting stored seed tubers of the widely adopted cultivar INIA 302 Amarilis in [...] Read more.
Postharvest losses caused by potato tuber moths severely impact storage in the Andean highlands, where reliance on synthetic insecticides poses sustainability and safety concerns. This study evaluated eco-friendly alternatives for protecting stored seed tubers of the widely adopted cultivar INIA 302 Amarilis in Cajamarca, Peru. In two storage facilities, a completely randomized block design compared four treatments: Bacillus thuringiensis plus talc (Bt-talc), talc, agricultural lime, and wood ash against an untreated control. Powders were applied at 50 g per 10 kg of tubers, and incidence, severity of damage, and live larvae were assessed over 150 days. Bt–talc consistently achieved the lowest damage. Incidence in Cochapampa was 16.8% ± 6.2 with Bt-talc, compared with 58.1% ± 3.9 in the control; in Sulluscocha, incidence was 25.5% ± 4.8 and 64.2% ± 3.0 for Bt-talc and the control, respectively. A similar pattern was observed for moth-damage severity in both localities. Live larvae per unit were also markedly lower with 1.3 ± 0.3 (Cochapampa) and 1.6 ± 0.6 (Sulluscocha) under Bt–talc. A single dusting with Bt–talc, or alternatively agricultural lime, offers effective, accessible, and sustainable control of potato tuber moths in high-Andean storage. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 3137 KB  
Article
Optimization Dispatch Method for Integrated Energy Systems in Agricultural Parks Considering the Operational Reliability of Energy Storage Batteries
by Yunjia Wang, Shiyao Hu, Zeya Zhang, Yan Zhang, Hongguang Yu, Ning Pang, Zihao Liu and Chen Shao
Processes 2026, 14(2), 269; https://doi.org/10.3390/pr14020269 - 12 Jan 2026
Viewed by 181
Abstract
Current scheduling strategies for energy storage batteries in agricultural parks generally overlook the issue of battery lifespan degradation, which significantly undermines the system’s economic efficiency and long-term reliability. To address this problem, this paper proposes an optimal scheduling method for integrated energy systems [...] Read more.
Current scheduling strategies for energy storage batteries in agricultural parks generally overlook the issue of battery lifespan degradation, which significantly undermines the system’s economic efficiency and long-term reliability. To address this problem, this paper proposes an optimal scheduling method for integrated energy systems in agricultural parks that takes into account the operational reliability of energy storage batteries. First, a battery capacity degradation model integrating both cycle aging and calendar aging is established, and the reliability of multiple components within the energy storage system is evaluated using Monte Carlo simulation. On this basis, an optimization scheduling model aimed at minimizing the total system operating cost is developed, dynamically balancing economic performance and battery service life. Finally, the proposed method is validated through a practical case study of a facility-based agricultural industrial park. The results demonstrate that, while ensuring stable system operation, the approach effectively extends the service life of energy storage equipment by 8–9 years, reduces the average daily operating cost by 61.94 yuan, and increases the power supply reliability rate to 99.921%. Full article
(This article belongs to the Special Issue Energy Storage and Conversion: Next-Generation Battery Technology)
Show Figures

Figure 1

34 pages, 719 KB  
Article
Prototype of Hydrochemical Regime Monitoring System for Fish Farms
by Sergiy Ivanov, Oleksandr Korchenko, Grzegorz Litawa, Pavlo Oliinyk and Olena Oliinyk
Sensors 2026, 26(2), 497; https://doi.org/10.3390/s26020497 - 12 Jan 2026
Viewed by 193
Abstract
This paper presents a prototype of an autonomous hydrochemical monitoring system developed for large freshwater aquaculture facilities, directly addressing the need for smart monitoring in Agriculture 4.0. The proposed solution employs low-power sensor nodes based on commercially available components and long-range LoRaWAN communication [...] Read more.
This paper presents a prototype of an autonomous hydrochemical monitoring system developed for large freshwater aquaculture facilities, directly addressing the need for smart monitoring in Agriculture 4.0. The proposed solution employs low-power sensor nodes based on commercially available components and long-range LoRaWAN communication to achieve continuous, scalable, and energy-efficient water quality monitoring. Each sensor module performs on-board signal preprocessing, including anomaly detection and short-term forecasting of key hydrochemical parameters. An ecological pond dynamics model incorporating an Extended Kalman Filter is used to fuse heterogeneous sensor data with predictive estimates, thus increasing measurement reliability. High-level data analysis, long-term storage, and cross-site comparison are performed on the server side. This integration enables adaptive tracking of environmental variations, supports early detection of hazardous trends associated with fish mortality risks, and allows one to explain and justify the reasoning behind every recommended corrective action. The performance of the forecasting and filtering algorithms is evaluated, and key system characteristics—including measurement accuracy, power consumption, and scalability—are discussed. Preliminary tests of the system prototype have shown that it can predict the dissolved oxygen level with RMSE = 0.104 mg/L even with a minimum set of sensors. The results demonstrate that the proposed conceptual design of the system can be used as a base for real-time monitoring and predictive assessment of hydrochemical conditions in aquaculture environments. Full article
Show Figures

Figure 1

32 pages, 3837 KB  
Article
The Development and Testing of a Temporary Small Cold Storage System: Gas-Inflated Membrane Cold Storage
by Lihua Duan, Xiaoyan Zhuo, Jiajia Su, Xiaokun Qiu, Limei Li, Wenhan Li, Yaowen Liu and Xihong Li
Foods 2026, 15(2), 231; https://doi.org/10.3390/foods15020231 - 8 Jan 2026
Viewed by 292
Abstract
At present, conventional cold storage facilities in China are poorly suited to on-farm storage demands for agricultural produce, mainly due to their large spatial requirements, complex and labor-intensive installation procedures, limited portability, and insufficient coverage in rural areas. These limitations significantly contribute to [...] Read more.
At present, conventional cold storage facilities in China are poorly suited to on-farm storage demands for agricultural produce, mainly due to their large spatial requirements, complex and labor-intensive installation procedures, limited portability, and insufficient coverage in rural areas. These limitations significantly contribute to post-harvest losses of perishable crops such as cherry tomatoes. To address this challenge, the present study proposes a compact and temporary cold storage system—gas-inflated membrane cold storage (GIMCS)—which exploits the inherent safety, cost-effectiveness, ease of deployment, and adaptability of inflatable membrane structures. A series of mechanical performance tests, including tensile strength, pressure resistance, and burst tests, were conducted on PA/PE (Polyamide/Polyethylene) composite membranes. The optimal configuration was identified as a membrane thickness of 70 μm, a gas column width of 2 cm, and a PA/PE composition ratio of 35%/65%. Thermal performance evaluations further revealed that filling the inflatable structure with 100% CO2 yielded the most effective insulation. Through structural optimization, a cotton-filled gas-inflated membrane cold storage system (CF-GIMCS) incorporating a dual insulation strategy—combining intra-membrane and extra-membrane insulation—was developed. This multilayer configuration significantly reduced conductive and convective heat transfer, resulting in enhanced thermal performance. A comparative evaluation between GIMCS and a conventional cold storage system of equivalent capacity was conducted over a 15-day storage period, considering construction cost, temperature uniformity, and fruit preservation quality. The results showed that the construction cost of GIMCS was only 38% of that of conventional cold storage. The internal temperature distribution of GIMCS was highly uniform, with a maximum horizontal temperature difference of 1.4 °C, demonstrating thermal stability comparable to conventional systems. No statistically significant differences were observed between the two systems in key post-harvest quality indicators, including weight loss and respiration rate. Notably, GIMCS exhibited superior performance in maintaining fruit firmness, with a hardness of 1.30 kg·cm−2 compared to 1.26 kg·cm−2 in conventional storage, indicating a potential advantage in shelf-life extension. Overall, these findings demonstrate that GIMCS represents an affordable, technically robust, and portable cold storage solution capable of delivering preservation performance comparable to—or exceeding—that of conventional cold storage. Its modularity, mobility, and ease of relocation make it particularly well suited to the operational and economic constraints of smallholder farming systems, offering a practical and scalable pathway for improving on-farm cold chain infrastructure. Full article
Show Figures

Figure 1

14 pages, 2325 KB  
Article
Two Birds with One Stone: One-Pot Conversion of Waste Biomass into N-Doped Porous Biochar for Efficient Formaldehyde Adsorption
by Qingsong Zhao, Ning Xiang, Miao Xue, Chunlin Shang, Yiyi Li, Mengzhao Li, Qiqing Ji, Yangce Liu, Hongyu Hao, Zheng Xu, Fei Yang, Tiezheng Wang, Qiaoyan Li and Shaohua Wu
Molecules 2026, 31(2), 201; https://doi.org/10.3390/molecules31020201 - 6 Jan 2026
Viewed by 185
Abstract
Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which [...] Read more.
Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which is derived from its poor surface activity and insufficient number of pores. In this study, a series of nitrogen-doped porous biochars with adjustable N-containing groups and porosity were synthesized by one-step pyrolysis of melamine and waste jujube pit in different mass ratios (NBC-x, x represented the mass ratio of melamine to waste jujube pit, x = 4–12) for HCHO adsorption. The HCHO adsorption tests indicated that the insertion of nitrogen-containing species improved the adsorption capacity of pristine biochar (BC). However, after the insertion of excessive nitrogen-containing species, the porosity of the samples significantly decreased due to the blockage of pores, which could be disadvantageous for HCHO adsorption. DFT calculation results showed that N doping (especially pyrrolic-N) significantly increased the maxima of absolute ESP values of the carbonaceous models and consequently enhanced the affinity between polar HCHO and carbonaceous models (varied from −20.65 kJ/mol to −33.26 kJ/mol). Thus, the NBC-8 possessing both substantial nitrogen content (19.81 wt. %) and developed porosity (specific surface area of 223 m2/g) exhibited the highest HCHO uptake of 6.30 mg/g. This was approximately 6.4 times larger than that of BC. This work not only deepens the understanding of the HCHO adsorption mechanism at molecular scale, but also concurrently offers a facile and eco-friendly route of N-doped porous biochar preparation, an efficient technology with high-value utilization of waste biomass resources, and a sustainable method of pollution remediation. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 896 KB  
Article
Morphological and Biochemical Attributes of Brassica cretica Populations Grown Under Drought Tolerance Conditions
by Theodora Ntanasi, Efthalia Stathi, Ioannis Karavidas, George P. Spyrou, Evangelos Giannothanasis, Maria-Eleftheria Zografaki, Panayiotis Trigas, Eleni Tani and Georgia Ntatsi
Horticulturae 2026, 12(1), 53; https://doi.org/10.3390/horticulturae12010053 - 31 Dec 2025
Viewed by 506
Abstract
Drought stress is a major constraint on crop productivity in the Mediterranean region. Brassica crops are particularly valued in this region for their adaptability, nutritional benefits, and economic importance in sustainable farming systems. However, their productivity is highly sensitive to water deficits, necessitating [...] Read more.
Drought stress is a major constraint on crop productivity in the Mediterranean region. Brassica crops are particularly valued in this region for their adaptability, nutritional benefits, and economic importance in sustainable farming systems. However, their productivity is highly sensitive to water deficits, necessitating the identification of drought-resilient genotypes. This study investigated the responses of five wild Brassica cretica populations and a commercial Brassica oleracea cultivar to a 50% reduction in irrigation, evaluating key physiological traits, leaf nutrient composition, and antioxidant activity. The experiment was conducted in the greenhouse facilities of the Laboratory of Vegetable Production, Agricultural University of Athens. The results revealed significant variation in drought tolerance among the tested populations. Specifically, an ecotype of B. cretica subsp. cretica (C: Akrokorinthos) and B. cretica subsp. laconica (E) showed substantial reductions in biomass, leaf area, and leaf number, whereas B. cretica subsp. aegaea (A: Manikia and B: Ymittos) and another ecotype of B. cretica subsp. cretica (D: Lasithi) maintained stable growth under water-limited conditions. Water deficit also significantly impacted leaf mineral composition, increasing NO3 and Na+ levels while decreasing P, Zn, and Mn. Additionally, drought stress enhanced antioxidant capacity and secondary metabolite production, as indicated by elevated ferric reducing antioxidant power, Trolox equivalent antioxidant capacity, total phenolic content, and total flavonoid content. Notably, the two studied populations of B. cretica subsp. aegaea (A: Manikia, B: Ymittos) and the population of B. cretica subsp. cretica from Lasithi (Crete) (D) exhibit promising drought tolerance, suggesting their potential for cultivation or breeding in water-limited environments. This research contributes to the broader effort of identifying favorable traits in crop wild relatives and to utilize these valuable genetic resources to develop climate-resilient crops for Mediterranean agriculture, where sustainable water use is critical for food security. Full article
Show Figures

Figure 1

21 pages, 65310 KB  
Article
The Effect of Electromagnetic Pulse Attacks on USB Camera Performance
by Gang Wei, Lei Shu, Wei Lin, Xing Yang, Ru Han, Kailiang Li and Kai Huang
J. Sens. Actuator Netw. 2026, 15(1), 4; https://doi.org/10.3390/jsan15010004 - 29 Dec 2025
Viewed by 497
Abstract
The camera is a core device for modern surveillance and data collection, widely used in various fields including security, transportation, and healthcare. However, their widespread deployment has proportionally escalated associated security risks. This paper initially examines the current state of research on attack [...] Read more.
The camera is a core device for modern surveillance and data collection, widely used in various fields including security, transportation, and healthcare. However, their widespread deployment has proportionally escalated associated security risks. This paper initially examines the current state of research on attack methods targeting camera systems, providing a comprehensive review of various attack techniques and their security implications. Subsequently, we focus on a specific attack method against universal serial bus (USB) cameras, known as electromagnetic pulse (EMP) attacks, which utilize EMP to prevent the system from detecting the cameras. We simulated EMP attacks using a solar insecticidal lamp (which generates EMP by releasing high-voltage pulses) and a commercially available EMP generator. The performance of the cameras under various conditions was evaluated by adjusting the number of filtering magnetic rings on the USB cable and the distance between the camera and the interference source. The results demonstrate that some USB cameras are vulnerable to EMP attacks. Although EMP attacks might not invariably cause image distortion or permanent damage, their covert nature can lead to false detection of system failures, data security, and system maintenance. Based on these findings, it is recommended to determine the optimal number of shielding rings for cameras or their safe distance from EMP sources through the experimental approach outlined in this study, thereby enhancing the security and resilience of USB camera enabled systems in specific scenarios. Full article
Show Figures

Figure 1

15 pages, 11704 KB  
Article
A Streamlined Methodology for Identifying Point-Source Inputs from Rural and Agricultural Sources
by Murray C. Borrello, Hannah Abner, Emmerson Goodin, Brady Crake, Lily Malamis, Colin Coffey, Madison Hall and Joe Magner
Sustainability 2026, 18(1), 74; https://doi.org/10.3390/su18010074 - 20 Dec 2025
Viewed by 378
Abstract
Rural and agricultural runoff continues to pose a threat to water quality and human health despite a plethora of research identifying likely causes. Large livestock operations and leaking septic systems have proven to be significant sources of both nutrients and bacteria in the [...] Read more.
Rural and agricultural runoff continues to pose a threat to water quality and human health despite a plethora of research identifying likely causes. Large livestock operations and leaking septic systems have proven to be significant sources of both nutrients and bacteria in the form of algal blooms and antibiotic-resistant Escherichia coli. These impacts are often witnessed on a watershed scale. Implementing remedies is complicated, as livestock operations are defined as point-source facilities under the USA Clean Water Act (CWA) but regulated as non-point-source entities under a NPDES CAFO general permit. Non-point-source pollutant assessment of watersheds involves a wide array of sampling parameters that focus primarily on impacts after-the-fact and lack regulatory teeth. This watershed management approach is not sustainable, as evidenced by the continual degradation of our rural watersheds. This study lays out streamlined methods and techniques incorporating focused parameters that can infer point-source pollutant pathways even in already impaired waterways. We applied this methodology to the Pine River Watershed in central Lower Michigan after the appearance of an algal bloom downstream from several potential nutrient inputs. Findings show that the application of these unique methods and techniques results in the successful identification of point-source inputs. These methods are inexpensive and demand few resources, and hence they are easily reproduced and replicated. Therefore, by regulating large livestock operations as point-source discharge entities, it is possible for local communities, educational institutions, and regulatory agencies to identify likely pollutant sources in a way that promotes higher water quality and long-term sustainability. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

26 pages, 4209 KB  
Article
Design of Sustainable Farm Complex—A Case Study of Farm in Vojvodina, Republic of Serbia
by Kristina Ćulibrk Medić, Arpad Čeh, Aleksandra Milinković and Danilo Vunjak
Sustainability 2025, 17(24), 11356; https://doi.org/10.3390/su172411356 - 18 Dec 2025
Viewed by 385
Abstract
This case study is an overview of architectural design solutions implemented in the construction of farming facilities and the technological processes necessary to support a sustainable farm that runs with nearly zero waste in a closed-loop system that functions with full energy independence. [...] Read more.
This case study is an overview of architectural design solutions implemented in the construction of farming facilities and the technological processes necessary to support a sustainable farm that runs with nearly zero waste in a closed-loop system that functions with full energy independence. The research will thoroughly investigate the specific location and configuration of the farm units in the target area—providing an extensive description of all necessary building typologies and infrastructures. The text will provide a summary of the agricultural solutions implemented at the farm, which is located in the region of Vojvodina in the Republic of Serbia. This region consists mainly of fertile agricultural land and could be a template for further designs and innovations in sustainable farming. This case study concerns the design of a resilient and self-reliant farm complex that consists of multiple animal species (broilers, pigs, and cattle), including a biogas station. The study is meant to show that adjustments made in architectural design, variations in building typology, and smart urban planning can contribute significantly to the improvement of sustainability in agricultural practices. This case study demonstrates that investments in sustainable solutions not only benefit the environment but can also deliver significant economic returns for investors—thereby further stimulating growth and development in the field of sustainable agriculture. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

Back to TopTop