Quantitative Determination of Nitrogen Content in Cucumber Leaves Using Raman Spectroscopy and Multidimensional Feature Selection
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Spectral Data Acquisition
2.3. N Content Determination
2.4. Preprocessing Methods
- (i)
- BaselineWavelet (BW): As reported by Zhang et al. [34], this approach is based on wavelet decomposition, which removes baseline drift by retaining only low-frequency approximation coefficients, thereby improving spectral reliability. In this study, the wavelet basis function chosen was db8, with six levels of decomposition.
- (ii)
- Iteratively Improve the Moving Average (IIMA): Following the method described by Wang et al. [35], this method is based on a moving average algorithm that iteratively adjusts the baseline by comparing the mean and central values within a moving window, enabling more accurate background fitting. The parameters were set as follows: window size = 31; iteration count = 5.
- (iii)
- Iterative Polynomial Fitting (IPF): According to the approach proposed by Gan et al. [36], this method uses polynomial regression for baseline correction by iteratively removing spectral peaks and progressively optimizing the baseline fitting to enhance correction accuracy. In this study, the polynomial fitting order was set to 15, and the residual threshold for stopping iterations was set to 5%.
2.5. Feature Extraction
- (i)
- Monte Carlo Sampling: In each iteration, 80% of calibration samples were randomly selected for modeling, while the remaining 20% were used as a validation set. The absolute values of regression coefficients in the PLSR model were recorded:
- (ii)
- Exponential decay function: An exponential decay function was applied to eliminate variables with small absolute regression coefficients. The proportion of retained spectral points in the jth iteration is given as follows:
- (iii)
- Adaptive reweighted sampling: in each iteration, a subset of variables was selected using adaptive reweighted sampling for PLSR modeling, and the Root Mean Square Error of Cross-Validation (RMSECV) was calculated.
- (iv)
- Selection of optimal feature subset: After n iterations, CARS generated n candidate feature subsets and their corresponding RMSECV values. The subset with the lowest RMSECV was selected as the final feature set.
2.6. Model Construction and Evaluation
3. Results
3.1. N Content Statistics and Dataset Partitioning
3.2. Comparison of Different Baseline Correction Methods
3.3. Spectral Analysis and Feature Extraction
3.4. Evaluation of the PLSR Model for N Content in Cucumber Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ohyama, T. Nitrogen as a major essential element of plants. Nitrogen Assim. Plants 2010, 37, 1–17. [Google Scholar]
- Amer, K.H.; Midan, S.A.; Hatfield, J.L. Effect of Deficit Irrigation and Fertilization on Cucumber. Agron. J. 2009, 101, 1556–1564. [Google Scholar] [CrossRef]
- Dai, J.; Liu, S.; Zhang, W.; Xu, R.; Luo, W.; Zhang, S.; Yin, X.; Han, L.; Chen, W. Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhouses. Sci. Hortic. 2011, 130, 551–561. [Google Scholar] [CrossRef]
- de Mello Prado, R.; Rozane, D.E. Leaf analysis as diagnostic tool for balanced fertilization in tropical fruits. In Fruit Crops; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Kant, S.; Bi, Y.-M.; Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 2011, 62, 1499–1509. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, C.; Wang, Y.; Gao, H.; Hu, L.; Wang, X. Research on a nondestructive model for the detection of the nitrogen content of tomato. Front. Plant Sci. 2023, 13, 1093671. [Google Scholar] [CrossRef] [PubMed]
- Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 1883, 22, 366. [Google Scholar] [CrossRef]
- Dumas, J. Procédés de l’analyse organique. Ann. Chim. Phys. 1831, 47, 198–205. [Google Scholar]
- Li, D.; Zhang, P.; Chen, T.; Qin, W. Recent Development and Challenges in Spectroscopy and Machine Vision Technologies for Crop Nitrogen Diagnosis: A Review. Remote Sens. 2020, 12, 2578. [Google Scholar] [CrossRef]
- Cavaco, A.M.; Utkin, A.B.; Marques da Silva, J.; Guerra, R. Making Sense of Light: The Use of Optical Spectroscopy Techniques in Plant Sciences and Agriculture. Appl. Sci. 2022, 12, 997. [Google Scholar] [CrossRef]
- Juárez, I.D.; Kurouski, D. Contemporary applications of vibrational spectroscopy in plant stresses and phenotyping. Front. Plant Sci. 2024, 15, 1411859. [Google Scholar] [CrossRef]
- Farber, C.; Kurouski, D. Raman Spectroscopy and Machine Learning for Agricultural Applications: Chemometric Assessment of Spectroscopic Signatures of Plants as the Essential Step Toward Digital Farming. Front. Plant Sci. 2022, 13, 887511. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, L. Early detection of zinc deficit with confocal Raman spectroscopy. J. Raman Spectrosc. 2018, 49, 1706–1712. [Google Scholar] [CrossRef]
- Sanchez, L.; Ermolenkov, A.; Biswas, S.; Septiningsih, E.M.; Kurouski, D. Raman Spectroscopy Enables Non-invasive and Confirmatory Diagnostics of Salinity Stresses, Nitrogen, Phosphorus, and Potassium Deficiencies in Rice. Front. Plant Sci. 2020, 11, 573321. [Google Scholar] [CrossRef]
- Huang, C.H.; Singh, G.P.; Park, S.H.; Chua, N.-H.; Ram, R.J.; Park, B.S. Early Diagnosis and Management of Nitrogen Deficiency in Plants Utilizing Raman Spectroscopy. Front. Plant Sci. 2020, 11, 663. [Google Scholar] [CrossRef]
- Dong, T.; Xiao, S.; He, Y.; Tang, Y.; Nie, P.; Lin, L.; Qu, F.; Luo, S. Rapid and Quantitative Determination of Soil Water-Soluble Nitrogen Based on Surface-Enhanced Raman Spectroscopy Analysis. Appl. Sci. 2018, 8, 701. [Google Scholar] [CrossRef]
- Qin, R.; Zhang, Y.; Ren, S.; Nie, P. Rapid Detection of Available Nitrogen in Soil by Surface-Enhanced Raman Spectroscopy. Int. J. Mol. Sci. 2022, 23, 10404. [Google Scholar] [CrossRef]
- Khongkaew, P.; Phechkrajang, C.; Cruz, J.; Cárdenas, V.; Rojsanga, P. Quantitative models for detecting the presence of lead in turmeric using Raman spectroscopy. Chemom. Intell. Lab. Syst. 2020, 200, 103994. [Google Scholar] [CrossRef]
- Pattamapan, L.; Chutima, P.; Pawida, S.; Natthinee, A. Raman spectroscopy coupled with the PLSR model: A rapid method for analyzing gamma-oryzanol content in rice bran oil. Food Chem. X 2024, 30, 101923. [Google Scholar] [CrossRef] [PubMed]
- Butler, H.J.; McAinsh, M.R.; Adams, S.; Martin, F.L. Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Anal. Methods 2015, 7, 4059–4070. [Google Scholar] [CrossRef]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mostafapour, S.; Dörfer, T.; Heinke, R.; Rösch, P.; Popp, J.; Bocklitz, T.J. Investigating the effect of different pre-treatment methods on Raman spectra recorded with different excitation wavelengths. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, M.; Hao, Y.; Zhang, Y.; Hou, Z. Quantitative analysis of chlorophyll content in citrus leaves by Raman Spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 1768–1772. [Google Scholar]
- Zhao, X.; Xu, M.; Zhang, W.; Liu, G.; Tong, L.J. Identification of zinc pollution in rice plants based on two characteristic variables. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120043. [Google Scholar] [CrossRef]
- Yu, M.; Bai, X.; Bao, J.; Wang, Z.; Tang, Z.; Zheng, Q.; Zhi, J. The Prediction Model of Total Nitrogen Content in Leaves of Korla Fragrant Pear Was Established Based on Near Infrared Spectroscopy. Agronomy 2024, 14, 1284. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Ni, H.; Xiao, W.; Wang, J.; Li, Y.; Wu, Y. Near infrared system coupled chemometric algorithms for the variable selection and prediction of baicalin in three different processes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 218, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Pan, S.; Tang, J.; Yuan, J.; Zhang, H.; Chen, B. Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years. Sustainability 2022, 14, 7543. [Google Scholar] [CrossRef]
- Shi, Z.; Tang, J.; Cheng, R.; Luo, D.; Liu, S. A review of nitrogen allocation in leaves and factors in its effects. Acta Ecol. Sin. 2015, 35, 5909–5919. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1938, 347, 39. [Google Scholar]
- Röll, G.; Hartung, J.; Graeff-Hönninger, S. Determination of Plant Nitrogen Content in Wheat Plants via Spectral Reflectance Measurements: Impact of Leaf Number and Leaf Position. Remote Sens. 2019, 11, 2794. [Google Scholar] [CrossRef]
- Hikosaka, K. Optimality of nitrogen distribution among leaves in plant canopies. J. Plant Res. 2016, 129, 299–311. [Google Scholar] [CrossRef]
- Antoszewski, G.; Guenther, J.F.; Roberts, J.K.; Adler, M.; Dalle Molle, M.; Kaczmar, N.S.; Miller, W.B.; Mattson, N.S.; Grab, H. Non-Invasive Detection of Nitrogen Deficiency in Cannabis sativa Using Hand-Held Raman Spectroscopy. Agronomy 2024, 14, 2390. [Google Scholar] [CrossRef]
- Yuan, Z.; Cao, Q.; Zhang, K.; Ata-Ul-Karim, S.T.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X.J. Optimal leaf positions for SPAD meter measurement in rice. Front. Plant Sci. 2016, 7, 719. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z.; Liu, Z.-X.; Zhang, Q.-M.; Ding, L.-X.; Ye, F.; Zhou, H. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J. Raman Spectrosc. 2009, 41, 659–669. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, F. Extraction and classification of origin characteristic peaks from rice Raman spectra by principal component analysis. Vib. Spectrosc. 2021, 114, 103249. [Google Scholar] [CrossRef]
- Gan, F.; Ruan, G.; Mo, J. Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemom. Intell. Lab. Syst. 2006, 82, 59–65. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Huang, X.; Li, H.; Ruan, Y.; Li, Z.; Yang, H.; Xie, G.; Yang, Y.; Du, Q.; Ji, K.; Yang, M.J. An integrated approach utilizing raman spectroscopy and chemometrics for authentication and detection of adulteration of agarwood essential oils. Front. Chem. 2022, 10, 1036082. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Razmovski-Naumovski, V.; Li, K.M.; Li, G.Q.; Chan, K.J. Differentiation of Pueraria lobata and Pueraria thomsonii using partial least square discriminant analysis (PLS-DA). J. Pharm. Biomed. Anal. 2013, 84, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Li, T.; Gao, H.; Chen, X.; Cui, Y.; Huang, Y. Evaluating calibration and spectral variable selection methods for predicting three soil nutrients using Vis-NIR spectroscopy. Remote Sens. 2021, 13, 4000. [Google Scholar] [CrossRef]
- Gao, X.; Fan, D.; Li, W.; Zhang, X.; Ye, Z.; Meng, Y.; Cheng-Yi Liu, T. Rapid quantification of the adulteration of pomegranate juices by Raman spectroscopy and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123014. [Google Scholar] [CrossRef]
- Zeng, J.; Ping, W.; Sanaeifar, A.; Xu, X.; Luo, W.; Sha, J.; Huang, Z.; Huang, Y.; Liu, X.; Zhan, B.; et al. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods 2021, 17, 4. [Google Scholar] [CrossRef]
- Synytsya, A.; Čopíková, J.; Matějka, P.; Machovič, V.J. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003, 54, 97–106. [Google Scholar] [CrossRef]
- Edwards, H.; Farwell, D.; Webster, D.J. FT Raman microscopy of untreated natural plant fibres. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Baranska, M.; Baranski, R.J. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 2005, 77, 212–221. [Google Scholar] [CrossRef] [PubMed]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Picaud, T.; Le Moigne, C.; Gomez de Gracia, A.; Desbois, A. Soret-Excited Raman Spectroscopy of the Spinach Cytochrome b6f Complex. Structures of the b-and c-Type Hemes, Chlorophyll a, and β-Carotene. Biochemistry 2001, 40, 7309–7317. [Google Scholar] [CrossRef]
- Vítek, P.; Novotná, K.; Hodaňová, P.; Rapantová, B.; Klem, K. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 170, 234–241. [Google Scholar] [CrossRef]
- Zhiying, Z.; Renao, G.; Tianhong, L. Raman Spectroscopy Application in Chemistry; Northeastern University Press: Boston, MA, USA, 1998. [Google Scholar]
- Yu, M.M.; Schulze, H.G.; Jetter, R.; Blades, M.W.; Turner, R.F.J. Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl. Spectrosc. 2007, 61, 32–37. [Google Scholar] [CrossRef]
- Devitt, G.; Howard, K.; Mudher, A.; Mahajan, S.J. Raman spectroscopy: An emerging tool in neurodegenerative disease research and diagnosis. ACS Chem. Neurosci. 2018, 9, 404–420. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, L. A Review on Dimension Reduction. Int. Stat. Rev. 2013, 81, 134–150. [Google Scholar] [CrossRef]
- Liu, R.; Tan, F.; Wang, Y.; Ma, B.; Yuan, M.; Wang, L.; Zhao, X. Machine learning identification of Saline-Alkali-Tolerant Japonica rice varieties based on Raman spectroscopy and Python visual analysis. Agriculture 2022, 12, 1048. [Google Scholar] [CrossRef]
- Jin, X.; Li, S.; Zhang, W.; Zhu, J.; Sun, J. Prediction of soil-available potassium content with visible near-infrared ray spectroscopy of different pretreatment transformations by the boosting algorithms. Appl. Sci. 2020, 10, 1520. [Google Scholar] [CrossRef]
- Hssaini, L.; Razouk, R.; Bouslihim, Y. Rapid prediction of fig phenolic acids and flavonoids using mid-infrared spectroscopy combined with partial least square regression. Front. Plant Sci. 2022, 13, 782159. [Google Scholar] [CrossRef] [PubMed]
- Congli, M.; Ziyu, W.; Hui, J. Determination of aflatoxin B1 in wheat using Raman spectroscopy combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 327, 125384. [Google Scholar]
- Onoda, Y.; Hikosaka, K.; Hirose, T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol. 2004, 18, 419–425. [Google Scholar] [CrossRef]
Dataset | Sample Size | Maximum (%) | Minimum (%) | Mean (%) | SD (%) |
---|---|---|---|---|---|
Calibration Set | 72 | 5.396 | 1.214 | 3.715 | 1.031 |
Prediction Set | 24 | 5.366 | 1.384 | 3.709 | 1.109 |
Total | 96 | 5.396 | 1.214 | 3.713 | 1.051 |
Preprocessing Method | LVs | Calibration | Prediction | |||
---|---|---|---|---|---|---|
R2c | RMSEC | R2p | RMSEP | RPDP | ||
CRS | 7 | 0.913 | 0.304 | 0.729 | 0.541 | 1.922 |
BW | 6 | 0.915 | 0.300 | 0.738 | 0.532 | 1.954 |
IIMA | 6 | 0.933 | 0.267 | 0.743 | 0.527 | 1.974 |
IPF | 6 | 0.919 | 0.294 | 0.799 | 0.466 | 2.231 |
No. | Wavenumber (cm−1) | Vibrational Mode | Assignment |
---|---|---|---|
1 | 747 | γ(C–O–H) of COOH | Pectin [43] |
2 | 917 | Symmetric in-plane ν(C–O–C) | Cellulose, phenylpropanoids [44] |
3 | 1000–1005 | In-plane CH3 rocking of polyene; aromatic ring vibration of phenylalanine | Carotenoids [45], proteins [46] |
4 | 1048–1068 | ν(C–O) + ν(C–C) + δ(C–O–H) | Cellulose, phenylpropanoids [44] |
5 | 1115 | δ(C–O–H) | Cellulose [44] |
6 | 1155 | ν(C–O–C), ν(C–C) in glycosidic linkages, asymmetric ring breathing | Chlorophyll [23], carotenoids [45] |
7 | 1185 | ν(CmC10) + δ(CbH); ν(C–O–H) next to aromatic ring + σ(CH) | Chlorophyll [47], carotenoids [45] |
8 | 1225 | δ(CH) + δ(CH2) | Chlorophyll [48] |
9 | 1286 | δ(N–H), amide III | Proteins [49] |
10 | 1327 | δ(CH2) | Cellulose, lignin [44] |
11 | 1387 | δ(CH2) | Aliphatics [50] |
12 | 1443–1446 | δ(CH2) + δ(CH3) | Aliphatics [50] |
13 | 1527–1545 | In-plane –C=C– stretching | Chlorophyll [23] |
14 | 1612 | NH2 scissoring vibration | Primary amines [49] |
15 | 1674 | ν(C=O), amide I | Proteins [51] |
Preprocessing Method | Feature Extraction Method | Number of Features | LVs | Calibration | Prediction | |||
---|---|---|---|---|---|---|---|---|
R2c | RMSEC | R2p | RMSEP | RPDP | ||||
BW | CARS | 267 | 4 | 0.924 | 0.284 | 0.714 | 0.502 | 1.871 |
4DFE | 810 | 6 | 0.928 | 0.277 | 0.719 | 0.551 | 1.887 | |
4DFE + CARS | 166 | 5 | 0.940 | 0.252 | 0.722 | 0.547 | 1.897 | |
IIMA | CARS | 234 | 4 | 0.933 | 0.266 | 0.738 | 0.481 | 1.954 |
4DFE | 810 | 6 | 0.937 | 0.259 | 0.742 | 0.528 | 1.969 | |
4DFE + CARS | 188 | 5 | 0.954 | 0.221 | 0.747 | 0.522 | 1.988 | |
IPF | CARS | 206 | 4 | 0.921 | 0.290 | 0.812 | 0.451 | 2.304 |
4DFE | 810 | 6 | 0.936 | 0.260 | 0.839 | 0.417 | 2.493 | |
4DFE + CARS | 188 | 5 | 0.947 | 0.250 | 0.847 | 0.368 | 2.555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Tan, F.; Li, M.; Gao, J.; Su, C.; Jiao, F.; Wang, Y.; Zheng, X. Quantitative Determination of Nitrogen Content in Cucumber Leaves Using Raman Spectroscopy and Multidimensional Feature Selection. Agronomy 2025, 15, 1884. https://doi.org/10.3390/agronomy15081884
Hou Z, Tan F, Li M, Gao J, Su C, Jiao F, Wang Y, Zheng X. Quantitative Determination of Nitrogen Content in Cucumber Leaves Using Raman Spectroscopy and Multidimensional Feature Selection. Agronomy. 2025; 15(8):1884. https://doi.org/10.3390/agronomy15081884
Chicago/Turabian StyleHou, Zhaolong, Feng Tan, Manshu Li, Jiaxin Gao, Chunjie Su, Feng Jiao, Yaxuan Wang, and Xin Zheng. 2025. "Quantitative Determination of Nitrogen Content in Cucumber Leaves Using Raman Spectroscopy and Multidimensional Feature Selection" Agronomy 15, no. 8: 1884. https://doi.org/10.3390/agronomy15081884
APA StyleHou, Z., Tan, F., Li, M., Gao, J., Su, C., Jiao, F., Wang, Y., & Zheng, X. (2025). Quantitative Determination of Nitrogen Content in Cucumber Leaves Using Raman Spectroscopy and Multidimensional Feature Selection. Agronomy, 15(8), 1884. https://doi.org/10.3390/agronomy15081884