Acid-Modified Biochar Derived from Agricultural Waste for Efficiently Capturing Low-Concentration Nitrous Oxide (N2O): Mechanisms and Environmental Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar and Gas Source
2.2. Characterization of Biochar
2.3. Kinetic Adsorption Analysis
2.4. Isothermal Adsorption Analysis
3. Results and Discussion
3.1. Characterization and Discussion of Biochar and Acid-Modified Materials
3.1.1. Elemental Analysis and Discussion of Biochar and Acid-Modified Materials
3.1.2. XRD Analysis and Discussion of Biochars and Acid-Modified Materials
3.1.3. FTIR Analysis and Discussion of Biochars and Acid-Modified Materials
3.1.4. BET Analysis and Discussion of Biochars and Acid-Modified Materials
3.1.5. SEM Analysis and Discussion of Biochars and Acid-Modified Materials
3.2. Kinetic Analysis and Discussion of Biochars Before and After Acid Modification
3.3. Isothermal Adsorption Analysis of Biochars Before and After Acid Modification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. United Nations Framework Convention on Climate Change. 9 May 1992. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 27 June 2025).
- Sun, H.; Jiang, J.J.; Mohsi, M.; Zhang, J.; Solangi, Y.A. Forecasting Nitrous Oxide emissions based on grey system models. Environ. Geochem. Health 2020, 42, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Quéré, C.L. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Waste Sector 2003: CH4 and N2O Emissions from Waste Water Handling. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. 29 July 1999. Available online: https://www.ipcc-nggip.iges.or.jp/public/gp/bgp/5_2_CH4_N2O_Waste_Water.pdf (accessed on 27 June 2025).
- Bitaisha, N.S.; Natalia, A.P. Mitigating CH4 and N2O emissions from domestic and industrial wastewater. Renew. Sustain. Energy Rev. 2025, 210, 115203. [Google Scholar]
- Li, H.J.; Peng, D.C.; Liu, W.B.; Yao, Q.; Zhuo, Y. Emission of non-CO2 greenhouse gases from different wastewater treatment processes. Environ. Sci. 2017, 38, 1640–1646. [Google Scholar]
- Tian, H.Q.; Xu, R.T.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.H.; Xu, W.Y.; Kuang, Y.; Xu, W.Q.; Liu, C.; Zhang, G.; Zhao, H.R.; Ren, S.X.; Zhou, G.S.; Xu, X.B. The Impact of Agroecosystems on Nitrous Acid (HONO) Emissions during Spring and Autumn in the North China Plain. Toxics 2024, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.L.; Jiang, T.; Yang, J.; Ma, X.G. Microbial dynamics driven by application of dicyandiamide and/or nitrate to nitrous oxide emission during co-composting of swine manure and cornstalk. Environ. Technol. Innov. 2023, 33, 103454. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, W.J.; Yao, H.Y. Urea-based nitrogen fertilization in agriculture: A key source of N2O emissions and recent development in mitigating strategies. Arch. Agron. Soil Sci. 2022, 111, 867–880. [Google Scholar] [CrossRef]
- Durá, G.; Budarin, V.L.; Castro-Osma, J.A.; Shuttleworth, P.S.; Quek, S.C.Z.; Clark, J.H.; North, M. Importance of Micropore-Mesopore Interfaces in Carbon Dioxide Capture by Carbon-Based Materials. Angew. Chem.-Int. Ed. 2016, 55, 9173–9177. [Google Scholar] [CrossRef] [PubMed]
- Frankel, M.L.; Bhuiyan, T.I.; Veksha, A.; Demeter, M.A.; Layzell, D.B.; Helleur, R.J.; Hill, J.M.; Turner, R.J. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour. Technol. 2016, 216, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.Q.; Kuang, X.B.; Xu, Z.X.; Li, D.Y.; Li, Y.T.; Zhang, Y.L. Adsorption of Cadmium and Lead Capacity and Environmental Stability of Magnesium-Modified High-Sulfur Hydrochar: Greenly Utilizing Chicken Feather. Toxics 2024, 12, 356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, N.; Tong, L.H.; Lv, Y.Z.; Li, G.J. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2, 4-dichlorophenoxyacetic acid. Chemosphere 2018, 210, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Wang, C.C.; He, X.Y.; Ren, L.M.; Guo, Q.; Yang, L.Y. Adsorption characteristics of modified aquatic plant biochar for low-concentration nitrate nitrogen. J. Ecol. Rural Environ. 2018, 34, 356–362. [Google Scholar]
- Maeda, K.; Hanajima, D.; Morioka, R.; Toyoda, S.; Yoshida, N. Mitigation of greenhouse gas emission from the cattle manure composting process by use of a bulking agent. Soil Sci. Plant Nutr. 2013, 59, 96–106. [Google Scholar] [CrossRef]
- Xu, Y.G.; Bai, T.X.; Yan, Y.B.; Zhao, Y.F.; Yuan, L.; Pan, P.; Jiang, Z. Enhanced removal of hexavalent chromiu-m by different acid-modified biochar derived from corn straw: Behavior and mechanism. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2020, 81, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 4 April 2022. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/ (accessed on 27 June 2025).
- Liang, Q. Preparation and Adsorption Properties of Pecan Exocarp Activated Carbon. Master’s Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2015. [Google Scholar]
- Francis, J.C.; Nighojkar, A.; Kandasubramanian, B. Relevance of wood biochar on CO2 adsorption: A review. Hybrid Adv. 2023, 3, 100056. [Google Scholar] [CrossRef]
- Tu, B.H.; Hu, Q.; Zhang, Y.; Fu, J.; Xiao, X.; Sun, Y.; Zhao, Y. Effects of biochars prepared from different types of straw on greenhouse gas emissions in paddy soil. Jiangsu J. Agric. Sci. 2019, 35, 7. [Google Scholar]
- Wang, Y.F.; Xu, L.; Liang, S.Q.; Li, D.N.; Xia, L.Z.; Yu, Y.X.; Wang, J.Z.; Tao, Y.; Zhang, Y. Hydrochloric acid-modified biochar enhances nitrogen retention and microbial diversity in mollisols. J. Environ. Chem. Eng. 2024, 12, 114129. [Google Scholar] [CrossRef]
- Jiang, H.T.; Dai, Y.J. Vitamin C modified crayfish shells biochar efficiently remove tetracycline from water: A good medicine for water restoration. Chemosphere 2023, 311, 136884. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.; Sheng, G.Y.; Chiou, C.T.; Xing, B.S. Compositions and sorptive properties of crop residue derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Liu, S.L.; Yang, Z.C.; Xiao, L. Synergetic effects of biochars and denitrifier on nitrate removal. Bioresour. Technol. 2021, 335, 125245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, Y.H.; Zhang, X.M.; Li, Q.; Yang, W.C. Effect on Cr(VI) adsorption performance of acid-base modified biochar. Environ. Eng. 2020, 38, 28–34. [Google Scholar]
- Zhou, Q.; Huang, Y.J.; Liu, L.Q.; Li, Z.Y.; Xiao, Y.X.; Li, Z.H.; Tian, T.; Pan, H. Enhanced cadmium adsorption by silicate-modified biochar derived from sawdust: Mechanisms and performance Analysis. Surf. Interfaces 2025, 65, 106430. [Google Scholar] [CrossRef]
- Jing, F.Q.; Pan, M.J.; Chen, J.W. Kinetic and isothermal adsorption-desorption of PAEs on biochars: Effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis. Environ. Sci. Pollut. Res. 2018, 25, 11493–11504. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hou, Y. Research progress on modified biochar composites. J. Sci. Teach. Coll. Univ. 2022, 42, 49–54. [Google Scholar]
- Xiao, G.C. Study on Adsorption Behavior of Rice Straw Biochar for Four Phenolic Acid Allelochemicals. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Du, K.Q.; Li, J.F.; Farid, A.M.; Wang, W.H.; Yang, G. Preparation of high-efficient phosphoric acid modified biochar toward ciprofloxacin removal from wastewater. Ind. Crops Prod. 2025, 226, 120649. [Google Scholar] [CrossRef]
- Zhang, P.G.; Li, L.; Fu, Q.; Du, C.Z.; Yang, A.Z.; Sun, N.; Wang, L.H.; Li, M. Balancing soil carbon emissions and productivity in maize agroecosystems through nitrogen, biochar, and straw regulation. Ind. Crops Prod. 2025, 224, 120442. [Google Scholar] [CrossRef]
- Dai, Y.J.; Zhang, N.X.; Xing, C.M.; Cui, Q.X.; Sun, Q.Y. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Jiang, T.; Liu, W.P.; Lin, C.M. Sorptive removal of dibutyl phthalate from aqueous solutions by baboo-derived biochar. Environ. Eng. Manag. J. 2016, 15, 105–112. [Google Scholar]
- Wei, C.; Lü, H.H.; Wang, Y.Y.; Liu, Y.X.; He, L.L.; Yang, X.Y.; Yang, S.M. Adsorption of ammonium nitrogen by iron-modified rice husk biochar. J. Plant Nutr. Fertil. 2021, 27, 595–609. [Google Scholar]
- Sadasivam, B.Y.; Reddy, K.R. Adsorption and transport of methane in biochars derived from waste wood. Waste Manag. 2015, 43, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.J. Preparation and Modification of Straw Biochar and its Adsorption Efficiency for Nitrogen and Phosphorus in Water. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar]
Material | Preparation Temperature (°C) | Heating Rate (°C/min) | Holding Time (h) |
---|---|---|---|
pecan shell biochar (SH) [19] | 600 | 10 | 1 |
poplar sawdust biochar (JM) [20] | 700 | 5 | 2 |
wheat straw biochar (XM) [21] | 550 | 5 | 4 |
corn straw biochar (YM) [22] | 800 | 5 | 2 |
Material | C/% | O/% | H/% | N/% | Ash/% | H/C | O/C | (O + N)/C |
---|---|---|---|---|---|---|---|---|
SH | 85.72 | 8.85 | 2.87 | 0.70 | 1.88 | 0.033 | 0.103 | 0.111 |
JM | 68.04 | 12.34 | 2.10 | 0.92 | 16.61 | 0.029 | 0.181 | 0.205 |
XM | 37.84 | 6.86 | 1.65 | 2.20 | 52.30 | 0.037 | 0.253 | 0.282 |
YM | 42.92 | 7.38 | 1.26 | 3.19 | 47.34 | 0.028 | 0.301 | 0.352 |
Material | C/% | O/% | H/% | N/% | Ash/% | H/C | O/C | (O + N)/C |
---|---|---|---|---|---|---|---|---|
SH-SG | 83.11 | 10.91 | 2.47 | 0.30 | 1.01 | 0.030 | 0.131 | 0.135 |
JM-SG | 81.65 | 10.88 | 1.84 | 0.23 | 5.41 | 0.023 | 0.133 | 0.136 |
XM-SG | 38.17 | 8.17 | 1.84 | 0.87 | 50.96 | 0.048 | 0.214 | 0.237 |
YM-SG | 44.87 | 7.99 | 1.29 | 0.66 | 45.20 | 0.029 | 0.178 | 0.193 |
Material | Specific Surface Area m2/g | Total Pore Volume cm3/g | Micropore Volume cm3/g | Aperture nm |
---|---|---|---|---|
SH | 3.3833 | 0.006687 | 0.000489 | 32.0450 |
JM | 190.3343 | 0.103057 | 0.059245 | 4.6607 |
XM | 14.1885 | 0.031243 | 0.001688 | 8.3111 |
YM | 134.3059 | 0.087114 | 0.041573 | 7.3314 |
Material | Specific Surface Area m2/g | Total Pore Volume cm3/g | Micropore Volume cm3/g | Aperture nm |
---|---|---|---|---|
SH-SG | 472.4921 | 0.196466 | 0.160959 | 3.2040 |
JM-SG | 312.4882 | 0.157832 | 0.100254 | 3.9573 |
XM-SG | 84.3999 | 0.068609 | 0.024710 | 8.1966 |
YM-SG | 203.2276 | 0.113235 | 0.065553 | 5.9984 |
Material | N2O Concentration | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|---|
Adsorption Constant k1 L/min | Equilibrium Adsorption Capacity qe mol/kg | R2 | Adsorption Constant k2 kg/mol/min | Equilibrium Adsorption Capacity qe mol/kg | R2 | ||
SH | 1% | 0.081 | 3.731 | 0.953 | 0.023 | 4.256 | 0.976 |
3% | 0.061 | 8.648 | 0.867 | 0.022 | 8.647 | 0.985 | |
5% | 0.043 | 21.644 | 0.914 | 0.002 | 26.687 | 0.943 | |
JM | 1% | 0.046 | 2.824 | 0.974 | 0.016 | 3.330 | 0.988 |
3% | 0.110 | 10.640 | 0.877 | 0.019 | 10.640 | 0.972 | |
5% | 0.044 | 12.664 | 0.969 | 0.003 | 15.102 | 0.984 | |
XM | 1% | 0.093 | 3.928 | 0.978 | 0.025 | 4.492 | 0.981 |
3% | 0.106 | 12.855 | 0.980 | 0.009 | 14.421 | 0.994 | |
5% | 0.079 | 27.338 | 0.949 | 0.003 | 31.422 | 0.977 | |
YM | 1% | 0.080 | 2.689 | 0.944 | 0.033 | 3.060 | 0.980 |
3% | 0.073 | 8.508 | 0.919 | 0.019 | 8.942 | 0.987 | |
5% | 0.051 | 18.758 | 0.938 | 0.003 | 22.003 | 0.960 |
Material | N2O Concentration | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|---|
Adsorption Constant k1 L/min | Equilibrium Adsorption Capacity qe mol/kg | R2 | Adsorption Constant k2 kg/mol/min | Equilibrium Adsorption Capacity qe mol/kg | R2 | ||
SH-SG | 1% | 0.097 | 6.937 | 0.979 | 0.016 | 4.743 | 0.979 |
3% | 0.324 | 8.166 | 0.994 | 0.059 | 8.705 | 0.994 | |
5% | 0.067 | 21.883 | 0.933 | 0.004 | 25.037 | 0.974 | |
JM-SG | 1% | 0.050 | 3.410 | 0.976 | 0.015 | 4.000 | 0.985 |
3% | 0.257 | 12.319 | 0.991 | 0.032 | 12.643 | 0.995 | |
5% | 0.138 | 22.271 | 0.981 | 0.007 | 24.722 | 0.993 | |
XM-SG | 1% | 0.106 | 8.320 | 0.961 | 0.016 | 9.174 | 0.990 |
3% | 0.200 | 14.242 | 0.991 | 0.018 | 14.834 | 0.994 | |
5% | 0.049 | 44.846 | 0.994 | 0.001 | 51.612 | 0.998 | |
YM-SG | 1% | 0.123 | 4.434 | 0.966 | 0.167 | 4.465 | 0.975 |
3% | 0.188 | 9.656 | 0.910 | 0.024 | 10.614 | 0.967 | |
5% | 0.068 | 21.794 | 0.985 | 0.004 | 24.595 | 0.989 |
Material | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Adsorption Constant kl | Equilibrium Adsorption Capacity qe mol/kg | R2 | Adsorption Constant kF | Adsorption Index 1/n | R2 | |
SH | 0.117 | 27.356 | 0.998 | 6.116 | 0.917 | 0.909 |
JM | 0.126 | 27.833 | 0.968 | 7.700 | 0.840 | 0.824 |
XM | 0.134 | 16.578 | 0.966 | 5.254 | 0.784 | 0.791 |
YM | 0.097 | 26.071 | 0.977 | 5.572 | 0.899 | 0.837 |
Material | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Adsorption Constant kl | Equilibrium Adsorption Capacity qe mol/kg | R2 | Adsorption Constant kF | Adsorption Index 1/n | R2 | |
SH-SG | 0.007 | 33.809 | 0.999 | 6.793 | 0.908 | 0.944 |
JM-SG | 0.022 | 29.233 | 0.954 | 7.889 | 0.953 | 0.947 |
XM-SG | 0.055 | 36.604 | 0.970 | 7.884 | 0.930 | 0.927 |
YM-SG | 0.062 | 28.820 | 0.991 | 6.696 | 0.879 | 0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Ma, Y.; Yang, F.; Xiao, Z.; Wang, M.; Bai, S.; Zhang, Q.; Liu, H.; Xu, D.; Zhang, Y. Acid-Modified Biochar Derived from Agricultural Waste for Efficiently Capturing Low-Concentration Nitrous Oxide (N2O): Mechanisms and Environmental Implications. Toxics 2025, 13, 623. https://doi.org/10.3390/toxics13080623
Fu M, Ma Y, Yang F, Xiao Z, Wang M, Bai S, Zhang Q, Liu H, Xu D, Zhang Y. Acid-Modified Biochar Derived from Agricultural Waste for Efficiently Capturing Low-Concentration Nitrous Oxide (N2O): Mechanisms and Environmental Implications. Toxics. 2025; 13(8):623. https://doi.org/10.3390/toxics13080623
Chicago/Turabian StyleFu, Mingming, Yingdi Ma, Fengrui Yang, Ziyu Xiao, Mei Wang, Shaoyuan Bai, Qin Zhang, Huili Liu, Dandan Xu, and Yanan Zhang. 2025. "Acid-Modified Biochar Derived from Agricultural Waste for Efficiently Capturing Low-Concentration Nitrous Oxide (N2O): Mechanisms and Environmental Implications" Toxics 13, no. 8: 623. https://doi.org/10.3390/toxics13080623
APA StyleFu, M., Ma, Y., Yang, F., Xiao, Z., Wang, M., Bai, S., Zhang, Q., Liu, H., Xu, D., & Zhang, Y. (2025). Acid-Modified Biochar Derived from Agricultural Waste for Efficiently Capturing Low-Concentration Nitrous Oxide (N2O): Mechanisms and Environmental Implications. Toxics, 13(8), 623. https://doi.org/10.3390/toxics13080623