Resource Utilization Enhancement and Life Cycle Assessment of Mangosteen Peel Powder Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Life Cycle Assessment (LCA)
2.2.1. Goal and Scope Definition
2.2.2. Life Cycle Inventory
2.2.3. Life Cycle Impact Assessment
- Health impacts are excluded from the analysis, as the MPP production process involves only hot-air drying, which generates minimal vapor emissions. These vapors are not expected to pose any health risks.
- Transportation of the raw material (i.e., fresh mangosteen peels from mangosteen orchards) to the processing site and the frozen storage are not considered in the analysis.
- Wastewater treatment is excluded because the MPP production process generates minimal wastewater, which is free of chemical contaminants. Most of the moisture is removed through evaporation.
- The geographical location is Thailand, and the emissions and energy consumption are specific to Thailand.
- Emissions from post-processing of the MPP (i.e., product use and disposal) are not part of the analysis.
- The LCIA is limited to GWP.
2.2.4. Interpretation
2.3. Physical, Chemical and Biological Properties
2.3.1. Moisture Content
2.3.2. Water Activity
2.3.3. α-Mangostin Assay
2.3.4. Microbial Count
3. Results of Life Cycle Assessment (LCA)
4. Discussion of Research Findings
5. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadernowski, R.; Czaplicki, S.; Naczk, M. Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chem. 2009, 112, 685–689. [Google Scholar] [CrossRef]
- Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W. Anti-mycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm. Bull. 2003, 51, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Geetha, R.; Roy, A.; Lakshmi, T. Evaluation of antibacterial activity of fruit rind extract of Garcinia mangostana linn on enteric pathogens—An in vitro study. Asian J. Pharm. Clin. Res. 2011, 4, 115–118. [Google Scholar]
- Gutierrez-Orozco, F.; Failla, M.L. Biological activities and bioavailability of mangosteen xanthones: A critical review of the current evidence. Nutrients 2013, 5, 3163–3183. [Google Scholar] [CrossRef]
- Zarena, A.; Sankar, K.U. Phenolic acids, flavonoid profile and antioxidant activity in mangosteen (Garcinia mangostana L.) pericarp. J. Food Biochem. 2012, 36, 627–633. [Google Scholar] [CrossRef]
- Cheok, Y.C.; Adzahan, M.N.; Rahman, A.R.; Abedin, H.Z.N.; Hussain, N.; Sulaiman, R.; Chong, H.G. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2017, 58, 335–361. [Google Scholar] [CrossRef]
- Lee, K.T.; Chen, W.H.; Sarles, P.; Park, Y.K.; Ok, Y.S. Recover energy and materials from agricultural waste via thermochemical conversion. One Earth 2022, 5, 1200–1204. [Google Scholar] [CrossRef]
- Yasmin, N.; Jamuda, M.; Panda, A.K.; Samal, K.; Nayak, J.K. Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Energy Nexus 2022, 7, 100092. [Google Scholar] [CrossRef]
- Ufitikirezi, J.d.D.M.; Filip, M.; Ghorbani, M.; Zoubek, T.; Olšan, P.; Bumbálek, R.; Strob, M.; Bartoš, P.; Umurungi, S.N.; Murindangabo, Y.T.; et al. Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion. Sustainability 2024, 16, 3617. [Google Scholar] [CrossRef]
- Gianico, A.; Gallipoli, A.; Gazzola, G.; Pastore, C.; Tonanzi, B.; Braguglia, C.M. A novel cascade biorefinery approach to transform food waste into valuable chemicals and biogas through thermal pretreatment integration. Bioresour. Technol. 2021, 338, 125517. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Hemshekhar, M.; Sunitha, K.; Santhosh, M.S.; Devaraja, S.; Kemparaju, K.; Vishwanath, B.; Niranjana, S.; Girish, K. An overview on genus garcinia: Phytochemical and therapeutical aspects. Phytochem. Rev. 2011, 10, 325–351. [Google Scholar] [CrossRef]
- Pinto, M.; Sousa, M.; Nascimento, M.S. Xanthone derivatives: New insights in biological activities. Curr. Med. Chem. 2005, 12, 2517–2538. [Google Scholar] [CrossRef] [PubMed]
- Pedraza-Chaverrí, J.; Reyes-Fermín, L.M.; Nolasco-Amaya, E.G.; Orozco-Ibarra, M.; Medina-Campos, O.N.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp. Toxicol. Pathol. 2009, 61, 491–501. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, Z.E.H.; Baghdadi, A.; Tayebi-Meigooni, A. Alpha-Mangostin-Rich Extracts from Mangosteen Pericarp: Optimization of Green Extraction Protocol and Evaluation of Biological Activity. Molecules 2018, 23, 1852. [Google Scholar] [CrossRef]
- Ibrahim, M.Y.; Hashim, N.M.; Mariod, A.A.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A. α-Mangostin from Garcinia mangostana linn: An updated review of its pharmacological properties. Arab. J. Chem. 2016, 9, 317–329. [Google Scholar] [CrossRef]
- Liu, S.H.; Lee, L.T.; Hu, N.Y.; Huange, K.K.; Shih, Y.C.; Munekazu, I.; Li, J.M.; Chou, T.Y.; Wang, W.H.; Chen, T.S. Effects of α-mangostin on the expression of anti-inflammatory genes in U937 cells. Chin. Med. 2012, 7, 19. [Google Scholar] [CrossRef]
- Yuvanatemiya, V.; Srean, P.; Klangbud, W.K.; Venkatachalam, K.; Wongsa, J.; Parametthanuwat, T.; Charoenphun, N. A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) pericarps. Molecules 2022, 27, 8775. [Google Scholar] [CrossRef]
- Sukatta, U. Xanthones from Mangosteen Peels in the Cosmetic Industry. Available online: https://www3.rdi.ku.ac.th/?p=62656 (accessed on 30 August 2022).
- García, M.L.; Carrión, M.H.; Escobar, S.; Rodríguez, A.; Cortina, J.R. Optimization of the antioxidant capacity of mangosteen peels (Garcinia mangostana L.) extracts: Management of the drying extraction processes. Food Sci. Technol. Int. 2021, 27, 404–412. [Google Scholar] [CrossRef]
- Sonesson, U.; Davis, J.; Ziegler, F. Food Production and Emissions of Greenhouse Gases: An Overview of the Climate Impact of Different Product Groups; The Swedish Institute for Food and Biotechnology: Gothenburg, Sweden, 2010. [Google Scholar]
- Joglekar, S.N.; Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Process of fruit peel waste biorefinery: A case study of citrus waste biorefinery, its environmental impacts and recommendations. Environ. Sci. Pollut. Res. 2019, 26, 34713–34722. [Google Scholar] [CrossRef]
- da Costa, J.S.; Maranduba, H.L.; de Sousa Castro, S.; de Almeida Neto, J.A.; Rodrigues, L.B. Environmental performance of orange citrus waste as raw material for pectin and essential oil production. Food Bioprod. Process. 2022, 135, 165–177. [Google Scholar] [CrossRef]
- Khanpit, V.V.; Tajane, S.P.; Mandavgane, S.A. Orange waste peel to high value soluble dietary fiber concentrate: Comparison of conversion methods and their environmental impact. Biomass Convers. Biorefin. 2022, 13, 14413–14423. [Google Scholar] [CrossRef]
- Khanpit, V.V.; Tajane, S.P.; Mandavgane, S.A. Production of soluble dietary fiber concentrate from waste orange peels: Study of nutritional and physicochemical properties and life cycle assessment. Biomass Conv. Bioref. 2023, 13, 14615–14627. [Google Scholar] [CrossRef]
- Midolo, G.; Cutuli, G.; Porto, S.M.C.; Ottolina, G.; Paini, J.; Valenti, F. LCA analysis for assessing environmenstal sustainability of new biobased chemicals by valorising citrus waste. Sci. Rep. 2024, 14, 21418. [Google Scholar] [CrossRef] [PubMed]
- Manakas, P.; Balafoutis, A.T.; Kottaridi, C. Sustainability assessment of orange peel waste valorization pathways from juice industries. Biomass Convers. Biorefin. 2025, 15, 6525–6544. [Google Scholar] [CrossRef]
- Shinde, P.N.; Mandavgane, S.A.; Karadbhajane, V. Process development and life cycle assessment of pomegranate biorefinery. Environ. Sci. Pollut. Res. 2020, 27, 25785–25793. [Google Scholar] [CrossRef]
- da Silva, A.K.P.; Cardoso, A.; de Sá Filho, E.B.; de Azeredo, H.M.C.; Freire, F.; Casimiro Filho, F.; de Figueirêdo, M.C.B. Integrating life cycle assessment in early process development stage: The case of extracting starch from mango kernel. J. Clean. Prod. 2021, 321, 128981. [Google Scholar] [CrossRef]
- Phanchandee, W.; Sachakamol, P. Life cycle assessment of mango and mangosteen in Thailand. In Proceedings of the 51st Kasetsart University Annual Conference, Bangkok, Thailand, 5–7 February 2013. [Google Scholar]
- Fernández-Ríos, A.; Laso, J.; Hoehn, D.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Ortego, C.; Fullana-I-Palmer, P.; Bala, A.; Batlle-Bayer, L.; Balcells, M.; et al. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean. Prod. 2022, 379, 134491. [Google Scholar] [CrossRef]
- Pleerux, N.; Aimkuy, N. Carbon footprint of mangosteen farm level evaluation in eastern Thailand. Curr. J. Appl. Sci. Technol. 2021, 21, 419–430. [Google Scholar]
- Bisinella, V.; Schmidt, S.; Varling, A.S.; Laner, D.; Christensen, T.H. Waste LCA and the future. Waste Manag. 2024, 174, 53–75. [Google Scholar] [CrossRef]
- Koiwanit, J.; Riensuwarn, F.; Palungpaiboon, P.; Pornchaloempong, P. Business viability and carbon footprint of Thai-grown Nam Dok Mai mango powdered drink mix. J. Clean. Prod. 2020, 254, 119991. [Google Scholar] [CrossRef]
- Pongsuttiyakorn, T.; Sooraksa, P.; Pornchalermpong, P. Simple Effective and Robust Weight Sensor for Measuring Moisture Content in Food Drying Process. Sens. Mater. 2019, 31, 2393–2404. [Google Scholar] [CrossRef]
- TAS 2-2013; National Bureau of Agricultural Commodity and Food Standards, Mangosteen Thai Agricultural Standard. Thai Agricultural Standard: Bangkok, Thailand, 2014.
- Saohin, W.; Boonchoong, P.; Iamlikitkuakoon, S.; Jamnoiprom, I.; Mungdee, W. Effects of drying temperature and residual moisture content of Fa-Tha-Li (Andrographis paniculata (Burm. f.) Nees) crude powder for capsule preparation. Thai J. Pharm. Sci. 2007, 31, 28–35. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. Climate Change 2007 Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2007. [Google Scholar]
- Lohsomboon, P.; Jirajariyavech, A. Life Cycle Inventory for Cement Product and Steel Making towards Sustainable Development; Thailand Environment Institute (TEI): Nonthaburi, Thailand, 2004. [Google Scholar]
- Wankanapon, P.; Chindapol, S.; Tantasavasdi, C. Environmental impact assessment for typical and innovative housing construction materials in Thailand. Int. J. Build. Urban Inter. Landsc. Technol. 2013, 2, 43–53. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Zhang, Y.; Jiao, S.; Lian, Z.; Deng, Y.; Zhao, Y. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (Todarodes pacificus). J. Food Sci. 2015, 80, 1012–1020. [Google Scholar] [CrossRef]
- Yoswathana, N. Accelerated extraction of Xanthone from Mangosteen pericarp using ultrasonic technique. Afr. J. Pharm. Pharmacol. 2012, 7, 302–330. [Google Scholar] [CrossRef]
- Maturin, L.; James, T.P. Bacteriological Analytical Manual Chapter 3: Aerobic Plate Count Edition 8, Revision A. 2001. Available online: https://www.fda.gov/food/science-research-food/laboratory-methods-food (accessed on 20 June 2010).
- National Bureau of Agricultural Commodity and Food Standards; Part4: Fruit and Seeds; Thai Agricultural Standard: Bangkok, Thailand, 2020; Available online: https://tas2go.acfs.go.th/upload_standard/45_en.pdf (accessed on 30 August 2022).
- Maysami, M.A.; Sedighi, R.; Ghaffari, H. Evaluation of different drying processes by energy consumption in an insulated and not insulated laboratory convection dryer. Food Res. 2020, 4, 107–111. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Midilli, A.; Bicer, Y. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers. Manag. 2003, 44, 1689–1705. [Google Scholar] [CrossRef]
- Esmaeili Adabi, M.; Mousavi Seyedi, S.R.; Kalantari, D.; Ghavami Adl, B. Mathematical modelling, kinetics and energy consumption for drying Aloe vera gel in hot air dryer with exhaust air recycle. J. Food Sci. Technol. 2016, 13, 73–83. [Google Scholar]
- Wróbel-Jędrzejewska, M.; Polak, E. Determination of carbon footprint in the processing of frozen vegetables using an online energy measurement system. J. Food Eng. 2022, 322, 110974. [Google Scholar] [CrossRef]
- Yao, J.; Chen, W.; Fan, K. Novel Efficient Physical Technologies for Enhancing Freeze Drying of Fruits and Vegetables: A Review. Foods 2023, 12, 4321. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Perez-Palacios, T.; Ruiz-Carrascal, J. Physico-chemical and sensory characteristics of freeze-dried and airdehydrated yogurt foam. LWT 2017, 80, 328–334. [Google Scholar] [CrossRef]
- El Hage, H.; Herez, A.; Ramadan, M.; Brazzi, H.; Khaled, M. An investigation on solar drying: A review with economic and environmental assessment. Energy 2018, 157, 815–829. [Google Scholar] [CrossRef]
- Singh, P.; Shrivastava, V.; Kumar, A. Recent developments in greenhouse solar drying: A review. Renew. Sustain. Energy Rev. 2018, 82, 3250–3262. [Google Scholar] [CrossRef]
- Udomkun, P.; Romuli, S.; Schock, S.; Mahayothee, B.; Sartas, M.; Wossen, T.; Njukwe, E.; Vanlauwe, B.; Müller, J. Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. J. Environ. Manag. 2020, 268, 110730. [Google Scholar] [CrossRef] [PubMed]
- Zdravkovic, M.; Snoeck, R.E.; Zicari, A.; Vranken, L.; Heinz, V.; Smetana, S.; Aganovic, K. Sustainability assessment of mobile juice processing unit: Farmers perspective. Future Foods 2021, 4, 100064. [Google Scholar] [CrossRef]
- Sirimark, P.; Yotmanee, S.; Pradubsri, W.; Somsila, P. Comparison of efficiency between liquefied petroleum gas (LPG) and electric hot air dryer: Case study of dried pork slice. J. Food 2023, 21, 181–188. [Google Scholar] [CrossRef]
- Castagnoli, A.; Salem, A.M.; Desideri, U.; Pecorini, I. Environmental assessment of gasification and green hydrogen potential role in waste management decarbonization. J. Clean. Prod. 2024, 482, 144174. [Google Scholar] [CrossRef]
- Martynenko, A.A.; Vieira, G.N.A. Sustainability of drying technologies: System analysis. Sustain. Food Technol. 2023, 1, 629–640. [Google Scholar] [CrossRef]
Reference | Raw Material | Scope of Study | Processing Process | End Product | |||||
---|---|---|---|---|---|---|---|---|---|
Property/Application | LCA | ||||||||
Physicochemical | Bioactive Compounds | Biological | Pharmaceutical Application | Production Process | Transportation | ||||
[10] | Food waste | ✓ | Anaerobic digestion | Biogas | |||||
[11] | Food waste | ✓ | Extraction, hydrolysate, anaerobic digestion | Phytochemical, bioplastic, bioethanol | |||||
[14] | Dried mangosteen peel | ✓ | ✓ | Extraction | α-mangostin extract | ||||
[15] | Dried mangosteen peel | ✓ | ✓ | Extraction | α-mangostin extract | ||||
[16] | Dried mangosteen peel | ✓ | Extraction, isolation | α-mangostin extract | |||||
[17] | Dried mangosteen peel | ✓ | Extraction, isolation | α-mangostin extract | |||||
[18] | Dried mangosteen peel | ✓ | Extraction | Xanthone extract | |||||
[20] | Dried mangosteen peel | ✓ | Drying, extraction | Mangosteen peel extracts | |||||
[22] | Citrus peel | ✓ | Hydrolysis, distillation, anaerobic digestion | Limonene, methane, ethanol | |||||
[23] | Orenge peel | ✓ | Hydrolysis, extraction | Essential oil, pectin | |||||
[24] | Orenge peel | ✓ | Extrusion | Soluble dietary fibers | |||||
[25] | Orenge peel | ✓ | ✓ | Autoclave | Soluble dietary fiber | ||||
[26] | Orenge peel | ✓ | Distillation, extraction | Pectin, limonene | |||||
[27] | Orenge peel | ✓ | Extraction | Essential oils, pectin, phenolic compounds | |||||
[28] | Dried pomegranate peel | ✓ | ✓ | Digestion, hydrolysis, extraction | Ellagic acid, pectin, gallic acid | ||||
[29] | Mango kernel | ✓ | Extraction | Starch | |||||
This study | ✓ | ✓ | ✓ | ✓ | ✓ | Six processing schemes | Mangosteen peel powder |
Production Scheme | Step/Process | Brand/Model | Electricity Usage (kW/h) | Duration | Yield (%) |
---|---|---|---|---|---|
Scheme 1 | Coarse grinding | CAMP, SKU: C-BBD-50 | 1.50 | 48 min | 98.00 |
Hot-air drying | KMITL’s food laboratory | 5.71 | 4.50 h | 50.00 | |
Fine grinding | Unique Tools, HM-030C | 2.24 | 1 h | 49.00 | |
Packing | Brother pedal sealer, PFS-f450 | 1.25 | 5 s | 49.00 | |
Scheme 2 | Coarse grinding | CAMP, SKU: C-BBD-50 | 1.50 | 48 min | 98.00 |
Quick freezing | R404a: non-CFC, Compact freeze, PATKOL | 15.41 | 90 min | 98.00 | |
Frozen storage | Cool Innotech | 2.80 | 12.50 h | 98.00 | |
Thawing | Panasonic, SBC-P2DBA | 0.49 | 8 h | 96.04 | |
Hot-air drying | KMITL’s food laboratory | 5.71 | 6.13 h | 36.49 | |
Fine grinding | Unique Tools, HM-030C | 2.24 | 1 h | 35.77 | |
Packing | Brother pedal sealer, PFS-f450 | 1.25 | 5 s | 35.71 | |
Scheme 3 | Coarse grinding | CAMP, SKU: C-BBD-50 | 1.50 | 48 min | 98.00 |
Frozen storage | Cool Innotech | 2.80 | 12.50 h | 98.00 | |
Thawing | Panasonic, SBC-P2DBA | 0.49 | 8 h | 96.00 | |
Hot-air drying | KMITL’s food laboratory | 5.71 | 8.16 h | 36.43 | |
Fine grinding | Unique Tools, HM-030C | 2.24 | 1 h | 36.43 | |
Packing | Brother pedal sealer, PFS-f450 | 1.25 | 5 s | 36.43 | |
Scheme 4 | Coarse grinding | CAMP, SKU: C-BBD-50 | 1.50 | 48 min | 98.00 |
Frozen storage | Cool Innotech | 2.80 | 12.50 h | 98.00 | |
Thawing | Panasonic, SBC-P2DBA | 0.49 | 8 h | 96.00 | |
Freeze-drying | I.T.C., Kryo “D” Freezer machine | 90.00 | 48 h | 37.44 | |
Fine grinding | Unique Tools, HM-030C | 2.24 | 1 h | 34.85 | |
Packing | Brother pedal sealer, PFS-f450 | 1.25 | 5 s | 34.85 | |
Scheme 5 | Frozen storage | Cool Innotech | 2.80 | 12.50 h | 100.00 |
Sun drying | - | - | 72 h | 84.25 | |
Fine grinding | Unique Tools, HM-030C | 2.24 | 3 h | 84.00 | |
Packing | Brother pedal sealer, PFS-f450 | 1.25 | 5 s | 84.00 | |
Scheme 6 | Frozen storage | Cool Innotech | 2.80 | 12.50 h | 98.99 |
Thawing | Panasonic, SBC-P2DBA | 0.49 | 8 h | 97.01 | |
Hot-air drying | I.T.C., | 30.00 | 48 h | 31.49 | |
Fine grinding | Unique Tools, HM-030C | 2.24 | 3 h | 30.86 | |
Packing | Brother pedal sealer, PFS-f450 | 1.25 | 5 s | 30.86 |
Step | Unit | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | Scheme 6 | |
---|---|---|---|---|---|---|---|---|
Coarse grinding | Input | - | - | |||||
Fresh MP | kg | 2.703 | 2.800 | 2.745 | 2.869 | |||
Electricity | kW/h | 0.463 | 0.480 | 0.471 | 0.492 | |||
Output | ||||||||
Processed MP | kg | 2.649 | 2.744 | 2.690 | 2.811 | |||
Quik freezing | Input | - | ||||||
Processed MP | kg | 2.744 | 2.690 | 2.811 | 1.191 | 3.240 | ||
Electricity | kW/h | 12.328 | 13.726 | 14.344 | 0.042 | 0.444 | ||
Output | ||||||||
Processed MP | kg | 2.744 | 2.690 | 2.811 | 1.191 | 3.208 | ||
Frozen storage | Input | - | - | - | - | - | ||
Processed MP | kg | 2.744 | ||||||
Electricity | kW/h | 14.000 | ||||||
Output | ||||||||
Processed MP | kg | 2.744 | ||||||
Thawing | Input | - | - | |||||
Processed MP | kg | 2.744 | 2.690 | 2.811 | 3.208 | |||
Electricity | kW/h | 1.597 | 1.556 | 1.626 | 0.050 | |||
Output | ||||||||
Processed MP | kg | 2.689 | 2.635 | 2.754 | 3.144 | |||
Hot-air drying | Input | - | - | |||||
Processed MP | kg | 2.649 | 2.689 | 2.6353 | 3.144 | |||
Electricity | kW/h | 9.919 | 14.000 | 18.2824 | 18.253 | |||
Output | ||||||||
Processed MP | kg | 1.027 | 1.022 | 1.0000 | 1.020 | |||
Freeze-drying | Input | - | - | - | - | - | ||
Processed MP | kg | 2.754 | ||||||
Electricity | kW/h | 1770.492 | ||||||
Output | ||||||||
Processed MP | kg | 1.074 | ||||||
Sun drying | Input | - | - | - | - | - | ||
Processed MP | kg | 1.191 | ||||||
Electricity | kW/h | - | ||||||
Output | ||||||||
Processed MP | kg | 1.003 | ||||||
Fine grinding | Input | |||||||
Processed MP | kg | 1.027 | 1.022 | 1.000 | 1.074 | 1.003 | 1.020 | |
Electricity | kW/h | 0.863 | 0.896 | 0.878 | 0.918 | 0.008 | 0.028 | |
Output | ||||||||
MPP | kg | 1.000 | 1.001 | 1.000 | 1.000 | 1.000 | 1.000 | |
Packing | Input | |||||||
MPP | kg | 1.000 | 1.001 | 1.000 | 1.000 | 1.000 | 1.000 | |
Electricity | kW/h | 0.018 | 0.016 | 0.002 | 0.003 | 0.002 | 0.002 | |
Output | ||||||||
Packaged MPP | kg | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Step | Unit | Scenario A | Scenario B | |
---|---|---|---|---|
Frozen storage (In Chumphon province) | Input | |||
MP | kg | 3.240 | 3.240 | |
Electricity | kW/h | 0.444 | 0.444 | |
Output | ||||
Processed MP | kg | 3.208 | 3.208 | |
Transportation | Input | |||
Processed MP | kg | 3.208 | 3.208 | |
Diesel | kg | 0.035 | 0.012 | |
Output | ||||
Processed MP | kg | 3.208 | 3.208 | |
Frozen storage (In Bangkok) | Input | - | ||
Processed MP | kg | 3.208 | ||
Electricity | kW/h | 0.444 | ||
Output | ||||
Processed MP | kg | 3.208 | ||
Thawing | Input | |||
Processed MP | kg | 3.208 | 3.208 | |
Electricity | kW/h | 0.050 | 0.050 | |
Output | ||||
Processed MP | kg | 3.144 | 3.144 | |
Hot-air drying | Input | |||
Processed MP | kg | 3.144 | 3.144 | |
Electricity | kW/h | 18.253 | 18.253 | |
Output | ||||
Processed MP | kg | 1.020 | 1.020 | |
Fine grinding | Input | |||
Processed MP | kg | 1.020 | 1.020 | |
Electricity | kW/h | 0.028 | 0.028 | |
Output | ||||
MPP | kg | 1.001 | 1.000 | |
Packing | Input | |||
MPP | kg | 1.001 | 1.000 | |
Electricity | kW/h | 0.002 | 0.002 | |
Output | ||||
Packaged MPP | kg | 1.000 | 1.000 |
Parameters | Scenario A | Scenario B | Reference |
---|---|---|---|
Type of vehicle | Refrigerated truck | Semi-trailer truck | Experts’ estimate |
Type of fuel | Diesel | Diesel | Experts’ estimate |
Fuel consumption rate (km/L) | 9.35 | 4.2 | |
Distance (km/trip) | 1120 | 1120 | Google map |
Vehicle load capacity (kg) | 3400 | 23,000 | Experts’ estimate |
Total fuel (liter per 1 kg of MPP) | 0.04 | 0.01 | Experts’ estimate |
Scheme/Scenario | Total GWP (kgCO2eq) | % Differences |
---|---|---|
Scheme 1 | 6.738 | - |
Scheme 2 | 17.627 | +161.6 |
Scheme 3 | 20.892 | +210.1 |
Scheme 4 | 1091.897 | +16,194.2 |
Scheme 5 | 0.031 | −99.54 |
Scheme 6 | 11.236 | +66.7 |
Scenario A | 11.834 | +5.3 (vs. scheme 6) |
Scenario B | 11.241 | +0.05 (vs. scheme 6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soontornwat, A.; Shrestha, Z.; Hutangkoon, T.; Koiwanit, J.; Rakmae, S.; Pornchaloempong, P. Resource Utilization Enhancement and Life Cycle Assessment of Mangosteen Peel Powder Production. Sustainability 2025, 17, 6423. https://doi.org/10.3390/su17146423
Soontornwat A, Shrestha Z, Hutangkoon T, Koiwanit J, Rakmae S, Pornchaloempong P. Resource Utilization Enhancement and Life Cycle Assessment of Mangosteen Peel Powder Production. Sustainability. 2025; 17(14):6423. https://doi.org/10.3390/su17146423
Chicago/Turabian StyleSoontornwat, Alisa, Zenisha Shrestha, Thunyanat Hutangkoon, Jarotwan Koiwanit, Samak Rakmae, and Pimpen Pornchaloempong. 2025. "Resource Utilization Enhancement and Life Cycle Assessment of Mangosteen Peel Powder Production" Sustainability 17, no. 14: 6423. https://doi.org/10.3390/su17146423
APA StyleSoontornwat, A., Shrestha, Z., Hutangkoon, T., Koiwanit, J., Rakmae, S., & Pornchaloempong, P. (2025). Resource Utilization Enhancement and Life Cycle Assessment of Mangosteen Peel Powder Production. Sustainability, 17(14), 6423. https://doi.org/10.3390/su17146423