Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture
Abstract
1. Introduction
2. Intermittent Lighting
Plants | The Photoperiod Duration (L + D Periods) | Frequency of L/D Cycles | Duty Ratio | Light Intensity (μmol·m−2·s−1) | Light Quality | Effect | Reference |
---|---|---|---|---|---|---|---|
Lettuce (Lactuca sativa var. crispa ‘Green Oak Leaf’) | 8 h +4 h | 2 | 8/12 | 200 | Red (660 nm):Blue (450 nm) = 9:1 | Increase shoot biomass, glucose content, sweetness, and crispness | [3] |
6 h + 3 h or 4 h +2 h | 3 | 6/9 or 4/6 | Increase glucose content, sweetness, and crispness | ||||
4 h + 2 h | 4 | 4/6 | Increase shoot biomass and glucose content | ||||
3 h + 1.5 h or 1 h + 0.5 h | 6 | 3/4.5 or 1/1.5 | Increase shoot biomass and glucose content | ||||
2 h + 1 h | 8 | 2/3 | Increase shoot biomass and glucose content | ||||
Lettuce (Lactuca sativa L. cv. Greenwave) | The light/dark ratio (L/D) of L/D = 2 and the light/dark period of 15–22 h (T15–T22) | 200 ± 20 or 245 ± 20 | White panel LED | Promotes the efficient cultivation of leaf lettuce and the reduction in running costs | [5] | ||
Long-leaf basil plants (Ocimum basilicum) | 4 h light + 4 h dark (receiving radiation every 10 min per h) | 228 | Red (660 nm) +Blue (450 nm) + near-infrared (NIR) (730 nm) | Increase in the biomass shoot of 47%, and a reduction in electricity consumption | [6] | ||
The plants received light for 10 min per hour of darkness when the electricity prices were high, and 4 h of light when the electricity prices were low | |||||||
Butterhead (Lactuca sativa L. var. capitata L. ‘Adriana’) | 12 h + 12 h | 1 | 12/24 | 200 | Red/Blue = 83%:17% | Have a growth advantage with slender and open leaves for better light interception. | [11] |
6 h + 6 h and 3 h + 3 h | 2 and 4 | 6/12 and 3/6 | Make the leaves compact and rounder, which reduces self-shading | ||||
Doritaenopsis (×DoritaenopsisQueen Beer ‘Mantefon’) | 10 h + 10 h | / | 10/20 | 160 ± 10 | / | Modify the photosynthesis patterns and vegetative growth, resulting in a reduction in the production period | [13] |
Tomato (Solanum lycopersicum L. var. Caniles and Cucumber (Cucumis sativus L. var. Litoral) | 18 h + 6 h | 1 | / | / | Red (622, 632, 638 nm)/Blue (454 nm) = 7:2 | Increase the concentration of total soluble sugars and proline in the leaf | [14] |
6 h + 2 h | 3 | 6/8 | Show the best water content. | ||||
Red leaf lettuce (Lactuca sativa L. cv. ‘Sunmang’) | / | 1 kHz | 75% | 173 ± 5 | Red (655 nm):white (456 nm + 558 nm)/Blue (456 nm) = 7:2:1 | Achieve biomass output equivalent to continuous light and significantly reduce energy consumption | [26] |
Cos lettuce (Lactuca sativa) | / | 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 kHz | 75% | 100 | White light-emitting diodes | The CUR at a duty ratio of 75% for each frequency was not significantly different from that in continuous light and reduced energy consumption | [27] |
3. Continuous Lighting
Plants | Treatment Duration (d) | Light Intensity (μmol·m−2·s−1) | Light Quality | Nitrogen Levels (mmol/L) | Effect | Reference |
---|---|---|---|---|---|---|
Lettuce (Lactuca sativa L. cv. ‘Yidali’) | 15 | 200 | R (630 nm):B (430 nm) = 3:1 | / | Obtained greater shoot biomass and ascorbate pool size without leaf injury | [32] |
Purple-leaf lettuce (Lactuca sativa ‘Zixiangye’) | 2 (Pre-harvest) | 150 | white LEDs (R:B = 4:1) | / | Improve the levels of carotenoids, AsA, and anthocyanins, while concurrently reducing the content of nitrate. | [43] |
Lettuce (Lactuca sativa L. cv. Butterhead) | 2 | 200 | R (630 nm):B (460 nm):G (530 nm) = 4:1:1 | / | Decreased nitrate content in lettuce leaves and promoted nutritional values | [44] |
Butterhead lettuce (Lactuca sativa var. capitata) | 1 | 200 | R (630 nm):B (460 nm):G (530 nm) = 4:1:1 | / | Decrease nitrate content and enhance lettuce quality. | [46] |
Lettuce (Lactuca sativa var. capitata. L.) | 2 (pre-harvest) | 100–150 | R (630 nm):B (460 nm) = 4:1 | / | Decrease nitrate concentration and increase vitamin C content and lettuce quality | [47] |
Lettuce (butterhead and red oak) | 3 (pre-harvest) | 200 | R (630 nm):B (460 nm) = 3:1 | Without nitrogen | Reduce the content of nitrate and sesquiterpene lactones, and improve the quantities of soluble sugar, soluble protein, anthocyanins, and phenolic compounds without reducing the fresh weight of lettuce | [48] |
Lettuce (Lactuca sativa L. cv. ‘Yidali’) | 3 (pre-harvest) | 150 | R (655 nm):B (460 nm) = 4:1 | 12 | Obtain higher yield and AsA content | [49] |
4. Night-Break Lighting
Plants | Treatment Duration | Light Intensity (μmol·m−2·s−1) | Light Quality | Effect | Reference |
---|---|---|---|---|---|
Cymbidium (Red Fire) and Cymbidium (Yokihi) | 22:00 pm–02:00 am | 3–7 | / | Promote flower induction | [67] |
120 | Promote flower induction and increase the quality of flowering | ||||
Tomato (Solanum lycopersicum) | Lasting for 10 min, with frequencies ranging from every 1, 2, 3, and 4 h | 20 | R (658 nm) | Decrease stem elongation and obtain more compact and healthier tomato plants | [68] |
Eustomab (E. grandiflorum ‘Nail Peach Neo’ | / | 4.5 | R (660 ± 30 nm):FR (730 ± 30 nm) > 5.3 | Delay flowering | [69] |
R (660 ± 30 nm):FR (730 ± 30 nm) < 5.3 | Promote flowering | ||||
>2.0 | R (660 ± 30 nm):FR (730 ± 30 nm) = 0.6 | Promote flowering | |||
Chrysanthemum (Dendranthema ×grandiflorum Kitam.) | 12:45 am–1:30 am | 9.42 | Red fluorescent light | Inhibit flowering and promote stem elongation | [73] |
Chrysanthemum (‘Jimba,’) | 23:00 pm–5:00 am | / | R (630 nm); R (690 nm); and INC lamps | Inhibit flower bud differentiation | [75] |
Chrysanthemum (‘Iwa no hakusen.’) | FR (735 nm); R (690 nm); and INC lamps | Delay flower bud differentiation | |||
Chrysanthemum (‘Iwa no hakusen‘) and Chrysanthemum (‘Jimba,’) | R (660 nm) + FR (735 nm) | Inhibit flower bud differentiation | |||
Chrysanthemu | 23:00 pm–5:00 am | / | R (630 nm); R (630 nm); R (660 nm) + FR (735 nm) | Inhibited floral differentiation | [76] |
Wild-type tomato (Solanum lycopersicum L. cv. ’Ailsa Craig’) | 30 min | 3.6 W·m−2 | R (630 nm) | Reactivate key antioxidant enzymes and defense against Botrytis cinerea infection | [78] |
5. Alternating Lighting
Plants | Lighting Modes | R/B Alternating Intervals | Light Intensity (μmol·m−2·s−1) | Photoperiod (h) | Effect | Reference |
---|---|---|---|---|---|---|
Lettuce (Lactuca sativa var. crispa ‘Green Oak Leaf’) | full-alternated | 8 h:8 h 1 h:1 h | R (660 nm) = 200 ± 5 B (450 nm) = 100 ± 5 | 16 | Accelerate lettuce growth speed and promote the shoot biomass | [96] |
4 h:4 h 2 h:2 h | Raise the ascorbic acid content and decrease the nitrate content | |||||
Lettuce (Lactuca sativa L. var. crispa) | full-alternated | 12 h:12 h | R (660 nm) = 100 B (450 nm) = 60 | 24 | Accelerated plant growth | [99] |
Lettuce (Lactuca sativa L. ‘Summer Surge’) | full-alternated | 18 h:6 h | R (660 nm) = 80 B (450 nm) = 80 | 24 | Enhance plant growth. | [100] |
12 h:12 h | R (660 nm) = 120 B (450 nm) = 40 | Enhance plant growth. | ||||
Leaf lettuce (Lactuca sativa L. ‘Greenwave’) | full-alternated | 12 h:12 h | R (660 nm) = 120 B (450 nm) = 120 | 24 | Increase total and fresh weight | [101] |
green and red pak choi (Brassica campestris L. ssp. chinensis var. communis) | full-alternated | 1 h:1 h | R (660 nm) = 100 B (460 nm) = 100 | 16 | Increasing the biomass of pak choi | [102] |
4 h:4 h | Enhance the accumulation of health-promoting compounds | |||||
Leaf lettuce (Lactuca sativa L. cv. ‘Greenwave’) | full-alternated | 21 h:3 h | R (660 nm) = 100 B (450 nm) = 100 | 24 | The shoot fresh weight under this treatment was significantly the highest | [103] |
Butterhead lettuce (Lactuca sativa L. ‘Flandria’) | full-alternated | 30 min:30 min | R (660 nm) = 180 ± 5 B (450 nm) = 20 ± 5 | 16 | Increase the fresh weight, dry weight, and the content of pigment and soluble sugar, and require the least number of photons and electricity per gram DW produced | [104] |
60 min:60 min | Obtain higher soluble sugar content and the total sweetness index (TSI), as well as lower crude fiber content |
6. Dynamic Lighting
7. EOD Far-Red
Plants | Light Intensity (μmol·m−2·s−1) | Light Quality | Treatment Duration | Effect | Reference |
---|---|---|---|---|---|
Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) | 10 | R (630 nm) | 30 min | Modulate the contents of the growth-controlling hormones to control shoot elongation and counteract the effect of the increased FR proportion at the EOD | [128] |
Tomato (Solanum lycopersicum ‘Ruifen 882’) | 43 | FR (735) | 30 min | Stimulated stem elongation, altered leaf morphology toward a higher leaf length/width ratio and larger leaf area, and stimulated tomato growth and production | [130] |
Tomato rootstock [Solanum lycopersicum ‘Aloha’ and Solanum × lycopersicum (S. lycopersicum × S. habrochaites) ‘Maxifort’] | / | Incandescent lamps | 24 min | Elongation was achieved without compromising growth and development | [131] |
Poinsettia (Euphorbia pulcherrima’ White Glitter’ and ‘Marble Star’) | 2–3 | 4 h R + FR (451 nm, 669 nm, 745 nm) + 2 h FR (745 nm) | Increase poinsettia extension growth and delay flowering | [133] | |
Cowpea (Vigna unguiculata) | total fluence of 222 μmol·m−2 | 500 W reflector flood lamp | 10 min | Increased both epicotyl elongation and GA1 content in the responsive epicotyl | [135] |
Sweet pepper (Capsicum annuum L. cv. ‘Frazier’) | 30 | / | 30 min | Led to more stem elongation, more upright branches, and more dry mass partitioning to stems | [136] |
Petunia (Petunia × hybrida) | 20 | R (600–700 nm):FR (700–780 nm) = 0.15 | 240 min | Greater elongation was observed when the R:FR decreased from 0.8 to 0.15, and when treatment duration increased from 30 min to 240 min | [137] |
Chrysanthemum (Chrysanthemum morifolium ‘Dekmona’, ‘Sei-elza’, and ‘Tourmalin’) | / | FR fluorescent tubes | 15 min | Promote stem elongation | [140] |
Sunflower (Helianthus annuus L.’Sunrich Orange’ and ‘Summer Sunrich Pine 45’); Snapdragon (Antirrhinum majus L. ‘Calyon White’ and ‘Reisen’); Stock (Matthiola incana L. ‘Pink Iron’) and Bupleurum (Bupleurum spp. ‘Green Gold’); Carnation (Dianthus caryophyllus L. ‘Barbara’) | 30 min | promote extension growth | |||
Two cultivars each of Helianthus annuus L. and Antirrhinum majus, and Matthiola incana, Bupleurum spp., Dianthus caryophyllus | 30 min | Promote flowering | |||
Celosia argentea L., var. cristata (L.) Kuntze (‘Delhi Pearl’) | 30 min | Promote stem elongation but delay flowering | |||
Lettuce (Lactuca sativa L. cv. ‘Red butter’ and ‘Green butter’) | White light as the basil light of EOD lighting, and supplementary far-red light | 30 min | Stimulate the plant and shoot biomass | [141] |
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAM | Crassulacean acid metabolism plants |
CL | Continuous light |
CR | Circadian resonance |
DLI | Daily light integral |
EOD | End-of-day |
FRL | Far-red light |
gs | Stomatal conductance |
L/D | Light/dark |
LDP | Long-day plants |
LED | Light-emitting diodes |
LMA | Leaf mass per area |
NAR | Net assimilation rate |
NB | Night break |
SDP | Short-day plants |
Pfr | The far-red-light-absorbing form |
Pn | Photosynthetic rate |
Pr | The red-light-absorbing form |
RL | Red light |
References
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Sivakumar, G.; Heo, J.W.; Kozai, T.; Paek, K.Y. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hortic. Sci. Biotechnol. 2006, 81, 546–548. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Kurata, H.; Mochizuki, A.; Okuda, N.; Seki, M.; Furusaki, S. Intermittent light irradiation with second-or hour-scale periods controls anthocyanin production by strawberry cells. Enzyme. Microb. Technol. 2000, 26, 621–629. [Google Scholar] [CrossRef]
- Urairi, C.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Optimization of Light-Dark Cycles of Lactuca sativa L. in Plant Factory. Environ. Control Biol. 2017, 55, 85–91. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Bartzanas, T.; Xydis, G. Minimising the energy footprint of indoor food production while maintaining a high growth rate: Introducing disruptive cultivation protocols. Food Control 2021, 130, 108290. [Google Scholar] [CrossRef]
- Fukuda, H.; Ukai, K.; Oyama, T. Self-arrangement of cellular circadian rhythms through phase-resetting in plant roots. Phys. Rev. E 2012, 86, 41917. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Liu, W.; Zha, L.; Zhou, C.; Zhang, Y.; Li, B. Altering light-dark cycle at pre-harvest stage regulated growth, nutritional quality, and photosynthetic pigment content of hydroponic lettuce. Acta Physiol. Plant. 2021, 43, 9. [Google Scholar] [CrossRef]
- Higashi, T.; Nishikawa, S.; Okamura, N.; Fukuda, H. Evaluation of growth under non-24 h period lighting conditions in Lactuca sativa L. Environ. Control Biol. 2015, 53, 7–12. [Google Scholar] [CrossRef]
- Warner, R.; Wu, B.; Macpherson, S.; Lefsrud, M. How the distribution of photon delivery impacts crops in indoor plant environments: A review. Sustainability 2023, 15, 4645. [Google Scholar] [CrossRef]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Ishii, M.; Ito, T.; Maruo, T.; Suzuki, K.; Matsuo, K. Plant growth and physiological characters of lettuce plants grown under artificial light of different irradiating cycles. Environ. Control Biol. 1995, 33, 143–149. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Lee, H.B.; An, S.K.; Kim, K.S. CO2 uptake behavior and vegetative growth of Doritaenopsis Queen Beer ‘Mantefon’ orchids as influenced by light/dark cycle manipulation. Flower Res. J. 2017, 25, 253–261. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Sabio, F.; Barbero, F.J.; Chica, R.M.; Lao, M.T. Physiological responses of tomato and cucumber seedlings under different light-dark cycles. Agronomy 2020, 10, 945. [Google Scholar] [CrossRef]
- King, R. Light-regulated plant growth and flowering; from photoreceptors to genes, hormones and signals. Acta Hort. 2006, 711, 227–234. [Google Scholar] [CrossRef]
- Hu, C.; Sun, D.; Yu, J.; Chen, M.; Xue, Y.; Wang, J.; Su, W.; Chen, R.; Anwar, A.; Song, S. Transcriptome analysis of intermittent light induced early bolting in flowering Chinese cabbage. Plants 2024, 13, 866. [Google Scholar] [CrossRef]
- Rengasamy, N.; Othman, R.Y.; Che, H.S.; Harikrishna, J.A. Artificial lighting photoperiod manipulation approach to improve productivity and energy use efficacies of plant factory cultivated Stevia rebaudiana. Agronomy 2022, 12, 1787. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.Z.; Hang, T.; Li, P.P. Photosynthetic characteristics and growth performance of lettuce (Lactuca sativa L.) under different light/dark cycles in mini plant factories. Photosynthetica 2020, 58, 740–747. [Google Scholar] [CrossRef]
- Zhang, Z.; He, D.; Niu, G.; Gao, R. Concomitant CAM and C3 photosynthetic pathways in Dendrobium officinale plants. J. Am. Soc. Hortic. Sci. 2014, 139, 290–298. [Google Scholar] [CrossRef]
- Cheng, Y.; He, D.; He, J.; Niu, G.; Ji, F. Effects of short light/dark cycles on photosynthetic pathway switching and growth of medicinal Dendrobium officinale in aeroponic cultivation. Int. J. Agric. Biol. Eng. 2019, 12, 38–43. [Google Scholar] [CrossRef]
- Cheng, Y.; He, D.; He, J.; Niu, G.; Gao, R. Effect of light/dark cycle on photosynthetic pathway switching and CO2 absorption in two Dendrobium species. Front. Plant Sci. 2019, 10, 659. [Google Scholar] [CrossRef]
- Chapepa, B.; Mudada, N.; Mapuranga, R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: An overview. J. Cotton Res. 2020, 3, 18. [Google Scholar] [CrossRef]
- Ramirez, A.V.; Heuvelink, E.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Continuous Light as a way to increase Greenhouse Tomato Production. In Proceedings of the VIIth International Symposium on Light in Horticultural Systems, Wageningen, The Netherlands, 14–18 October 2012. [Google Scholar] [CrossRef]
- Pearcy, R.W. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41, 421–453. [Google Scholar] [CrossRef]
- Jishi, T.; Matsuda, R.; Fujiwara, K. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light. Photosynth. Res. 2015, 124, 107–116. [Google Scholar] [CrossRef]
- Son, K.; Jeon, Y.; Oh, M. Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting. Hortic. Environ. Biotechnol. 2016, 57, 560–572. [Google Scholar] [CrossRef]
- Jishi, T.; Fujiwara, K.; Nishino, K.; Yano, A. Pulsed light at lower duty ratios with lower frequencies is less advantageous than continuous light for CO2 uptake in Cos Lettuce. J. Light Vis. Environ. 2012, 36, 88–93. [Google Scholar] [CrossRef]
- Filatov, D.A.; Vetchinnikov, A.A.; Olonina, S.I.; Olonin, I.Y. Intermittent LED lighting helps reduce energy costs when growing microgreens on vertical controlled environment farms. IOP Conf. Ser. Earth Environ. Sci. 2022, 979, 012096. [Google Scholar] [CrossRef]
- Kang, J.H.; Krishnakumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318. [Google Scholar] [CrossRef]
- Sysoeva, M.I.; Markovskaya, E.F.; Shibaeva, T.G. Plants under continuous light: A review. Plant Stress 2010, 4, 5–17. [Google Scholar]
- Zha, L.; Zhang, Y.; Liu, W. Dynamic Responses of ascorbate pool and metabolism in lettuce to long-term continuous light provided by red and blue LEDs. Environ. Exp. Bot. 2019, 163, 15–23. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W.; Yang, Q.; Zhang, Y.; Zhou, C.; Shao, M. Regulation of ascorbate accumulation and metabolism in lettuce by the red: Blue ratio of continuous light using LEDs. Front. Plant Sci. 2020, 11, 704. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Mamaev, A.V.; Titov, A.F. Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting. Russ. J. Plant Physiol. 2023, 70, 15. [Google Scholar] [CrossRef]
- Murage, E.N.; Watashiro, N.; Masuda, M. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination. Sci. Hortic. 1997, 68, 73–82. [Google Scholar] [CrossRef]
- Murage, E.N.; Masuda, M. Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes. Sci. Hortic. 1997, 70, 269–279. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Markovskaya, E.F. Growth and development of cucumber Cucumis sativus L. in the prereproductive period under long photoperiods. Russ. J. Dev. Biol. 2013, 44, 78–85. [Google Scholar] [CrossRef]
- Wolff, S.A.; Langerud, A. Fruit yield, starch content and leaf chlorosis in cucumber exposed to continuous lighting. Eur. J. Hortic. Sci. 2006, 71, 259. [Google Scholar] [CrossRef]
- Cushman, K.E.; Tibbitts, T.W.; Sharkey, T.D.; Wise, R.R. Constant-light injury of potato: Temporal and spatial patterns of carbon dioxide assimilation, starch content, chloroplast integrity, and necrotic lesions. J. Am. Soc. Hortic. Sci. 1995, 120, 1032–1040. [Google Scholar] [CrossRef]
- Wheeler, R.M. Potato and human exploration of space: Some observations from NASA-Sponsored controlled environment studies. Potato Res. 2006, 49, 67–90. [Google Scholar] [CrossRef]
- Haque, M.S.; Haque, M.S.; de Sousa, A.; Soares, C.; Kjaer, K.H.; Fidalgo, F.; Rosenqvist, E.; Ottosen, C.O. Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance. Front. Plant Sci. 2017, 8, 1602. [Google Scholar] [CrossRef]
- Matsuda, R.; Ozawa, N.; Fujiwara, K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences. Sci. Hortic. 2014, 170, 150–158. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, W.; Li, J.; Huang, Z.; Tao, Y.; Hong, J.; Zhang, L.; Zhou, Y. Pre-harvest short-term continuous LED lighting improves the nutritional quality and flavor of hydroponic purple-leaf lettuce. Sci. Hortic. 2024, 334, 113304. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Y.; Wang, Y.; Yang, Q.; Li, Q. Rerouting artificial light for efficient crops production: A review of lighting strategy in PFALs. Agronomy 2022, 12, 1021. [Google Scholar] [CrossRef]
- Bian, Z.-H.; Cheng, R.-F.; Yang, Q.-C.; Wang, J.; Lu, C. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. J. Am. Soc. Hortic. Sci. 2016, 141, 186–195. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liu, W.; Yang, Q.C. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities. J. Hortic. Sci. Biotechnol. 2012, 87, 429–434. [Google Scholar] [CrossRef]
- Yang, X.; Hu, J.; Wang, Z.; Huang, T.; Xiang, Y.; Zhang, L.; Peng, J.; Tomas-Barberan, F.A.; Yang, Q. Pre-harvest nitrogen limitation and continuous lighting improve the quality and flavor of Lettuce (Lactuca sativa L.) under hydroponic conditions in greenhouse. J. Agric. Food. Chem. 2022, 71, 710–720. [Google Scholar] [CrossRef]
- Zhang, Y.; Zha, L.; Liu, W.; Zhou, C.; Shao, M.; Yang, Q. LED light quality of continuous light before harvest affects growth and AsA metabolism of hydroponic lettuce grown under increasing doses of nitrogen. Plants 2021, 10, 176. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; Dünner-Planella, G.; Vreugdenhil, D.; Millenaar, F.F.; Van Ieperen, W. On the induction of injury in tomato under continuous light: Circadian asynchrony as the main triggering factor. Funct. Plant Biol. 2017, 44, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Liu, W.; Zhou, C.; Wang, Q.; Li, B. Alternation of temporally overlapped red and blue light under continuous irradiation affected yield, antioxidant capacity and nutritional quality of purple-leaf lettuce. Sci. Hortic. 2022, 295, 110864. [Google Scholar] [CrossRef]
- Craker, L.E.; Seibert, M. Light energy requirements for controlled environment growth of lettuce and radish. Trans. ASAE 1982, 25, 214–216. [Google Scholar] [CrossRef]
- Niu, G.; Ohashi, M.; Kozai, T.; Kitaya, Y. Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. Hortscience 1998, 33, 988–991. [Google Scholar] [CrossRef]
- Craker, L.E.; Seibert, M.; Clifford, J.T. Growth and development of radish (Raphanus sativus, L.) under selected light environments. Ann. Bot. 1983, 51, 59–64. [Google Scholar] [CrossRef]
- Jiao, J.; Tsujita, M.J.; Grodzinski, B. Influence of radiation and CO2 enrichment on whole plant net CO2 exchange in roses. Can. J. Plant Sci. 1991, 71, 245–252. [Google Scholar] [CrossRef]
- Haque, M.S.; Kjaer, K.H.; Erosenqvist, E.; Eottosen, C. Continuous light increases growth, daily carbon gain, antioxidants and alters carbohydrate metabolism in a cultivated and a wild tomato species. Front. Plant Sci. 2015, 6, 522. [Google Scholar] [CrossRef]
- Van Gestel, N.C.; Nesbit, A.D.; Gordon, E.P.; Green, C.; Paré, P.W.; Thompson, L.; Peffley, E.B.; Tissue, D.T. Continuous light may induce photosynthetic downregulation in onion–consequences for growth and biomass partitioning. Physiol. Plant. 2005, 125, 235–246. [Google Scholar] [CrossRef]
- Iluz, D.; Alexandrovich, I.; Dubinsky, Z. The enhancement of photosynthesis by fluctuating light. Artif. Photosynth. 2012, 288, 116–133. [Google Scholar] [CrossRef]
- Hiroki, R.; Shimizu, H.; Ito, A.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Identifying the optimum light cycle for lettuce growth in a plant factory. In Proceedings of the International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037, Jeju, Republic of Korea, 6–13 October 2013; pp. 863–868. [Google Scholar] [CrossRef]
- Lanoue, J.; St Louis, S.; Little, C.; Hao, X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. Front. Plant Sci. 2022, 13, 983222. [Google Scholar] [CrossRef]
- Demers, D.A.; Gosselin, A. Growing greenhouse tomato and sweet pepper under supplemental lighting: Optimal photoperiod, negative effects of long photoperiod and their causes. In Proceedings of the IV International ISHS Symposium on Artificial Lighting 580, Quebec City, QC, Canada, 7–9 November 2000; pp. 83–88. [Google Scholar] [CrossRef]
- Globig, S.; Rosen, I.; Janes, H.W. Continuous light effects on photosynthesis and carbon metabolism in tomato. In Proceedings of the III International Symposium on Artificial Lighting in Horticulture 418, Noorwijkerhout, The Netherlands, 23–27 January 1994; pp. 141–152. [Google Scholar]
- Lanoue, J.; Zheng, J.; Little, C.; Thibodeau, A.; Grodzinski, B.; Hao, X. Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting. Front. Plant Sci. 2019, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Hakuzan, R.; Fukai, S. Recent progress in night-break lighting technique based on photoperiodism of chrysanthemum. In Proceedings of the XIII International Symposium on Flower Bulbs and Herbaceous Perennials 1237, Seoul, Republic of Korea, 1–3 May 2019; pp. 129–136. [Google Scholar] [CrossRef]
- Pearce, S.; Shaw, L.M.; Lin, H.; Cotter, J.D.; Li, C.; Dubcovsky, J. Night-break experiments shed light on the Photoperiod1-mediated flowering. Plant Physiol. 2017, 174, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, M.G.; Runkle, E.S. Intermittent light from a rotating high-pressure sodium lamp promotes flowering of long-day plants. Hortscience 2010, 45, 236–241. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.J.; Kim, K.S. Night interruption promotes vegetative growth and flowering of Cymbidium. Sci. Hortic. 2011, 130, 887–893. [Google Scholar] [CrossRef]
- Cao, K.; Cui, L.; Ye, L.; Zhou, X.; Bao, E.; Zhao, H.; Zou, Z. Effects of red light night break treatment on growth and flowering of tomato plants. Front. Plant Sci. 2016, 7, 527. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Tanigawa, T.; Suyama, T.; Matsuno, T.; Kunitake, T. Red:far-red light ratio and far-red light integral promote or retard growth and flowering in Eustoma grandiflorum (Raf.) Shinn. Sci. Hortic. 2008, 120, 101–106. [Google Scholar] [CrossRef]
- Weller, J.L.; Beauchamp, N.; Kerckhoffs, L.H.J.; Platten, J.D.; Reid, J.B. Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J. 2001, 26, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Noquet, C.; Meuriot, F.; Caillot, S.; Avice, J.; Ourry, A.; Cunningham, S.M.; Volenec, J.J. Short-day photoperiod induces changes in N uptake, N partitioning and accumulation of vegetative storage proteins in two Medicago sativa cultivars. Funct. Plant Biol. 2003, 30, 853–863. [Google Scholar] [CrossRef]
- Kamath, S.R.; Singh, R.; Singh, P. Effect of night-break on growth and flower production in Kalanchoe. Indian J. Hortic. 2024, 81, 77–81. [Google Scholar] [CrossRef]
- Haile, B.M.; Mohammed, B.H.; Tesema, T.M.; Gobena, R.A. Control of growth and flowering of chrysanthemum (Dendranthema x grandiflorum Kitam.) using day length extension and Red Light Night Break. Ornam. Horticult. 2020, 27, 365–373. [Google Scholar] [CrossRef]
- Higuchi, Y.; Sumitomo, K.; Oda, A.; Shimizu, H.; Hisamatsu, T. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J. Plant Physiol. 2012, 169, 1789–1796. [Google Scholar] [CrossRef]
- Liao, Y.; Suzuki, K.; Yu, W.; Zhuang, D.; Takai, Y.; Ogasawara, R.; Shimazu, T.; Fukui, H. Night break effect of LED light with different wavelengths on floral bud differentiation of chrysanthemum morifolium Ramat ‘Jimba’ and Iwa no hakusen. Environ. Control Biol. 2014, 52, 45–50. [Google Scholar] [CrossRef]
- Ochiai, M.; Liao, Y.; Shimazu, T.; Takai, Y.; Suzuki, K.; Yano, S.; Fukui, H. Varietal differences in flowering and plant growth under night-break treatment with LEDs in 12 chrysanthemum cultivars. Environ. Control Biol. 2015, 53, 17–22. [Google Scholar] [CrossRef]
- Singh, R.; Bala, M. Effects of different sources of light as night break on growth characteristics of Korean chrysanthemum (Chrysanthemum morifolium Ramat.) genotypes. Bangladesh J. Bot. 2020, 49, 967–974. [Google Scholar] [CrossRef]
- Kukri, A.; Czékus, Z.; Gallé, Á.; Nagy, G.; Zsindely, N.; Bodai, L.; Galgóczy, L.; Hamow, K.Á.; Szalai, G.; Ördög, A.; et al. Exploring the effects of red light night break on the defence mechanisms of tomato against fungal pathogen Botrytis cinerea. Physiol. Plant. 2024, 176, e14504. [Google Scholar] [CrossRef] [PubMed]
- Krahmer, J.; Ganpudi, A.; Abbas, A.; Romanowski, A.; Halliday, K.J. Phytochrome, carbon sensing, metabolism, and plant growth plasticity. Plant Physiol. 2018, 176, 1039–1048. [Google Scholar] [CrossRef]
- Hughes, J.; Lamparter, T. Prokaryotes and phytochrome. The connection to chromophores and signaling. Plant Physiol. 1999, 121, 1059–1068. [Google Scholar] [CrossRef]
- Smith, H. Phytochromes and light signal perception by plants—An emerging synthesis. Nature 2000, 407, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Nozue, K.; Covington, M.F.; Duek, P.D.; Lorrain, S.; Fankhauser, C.; Harmer, S.L.; Maloof, J.N. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007, 448, 358–361. [Google Scholar] [CrossRef]
- Park, Y.G.; Jeong, B.R. Night interruption light quality changes morphogenesis, flowering, and gene expression in Dendranthema grandiflorum. Hortic. Environ. Biotechnol. 2019, 60, 167–173. [Google Scholar] [CrossRef]
- Legris, M.; Ince, Y.Ç.; Fankhauser, C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 2019, 10, 5219. [Google Scholar] [CrossRef]
- Mer, M.S.; Attri, B.L. Effect of photoperiod on flowering in ornamental annuals. J. Med. Plants Stud. 2015, 3, 121–126. [Google Scholar]
- Wigge, P.A. FT, a mobile developmental signal in plants. Curr. Biol. 2011, 21, R374–R378. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Taoka, K.; Ohki, I.; Tsuji, H.; Furuita, K.; Hayashi, K.; Yanase, T.; Yamaguchi, M.; Nakashima, C.; Purwestri, Y.A.; Tamaki, S. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 2011, 476, 332–335. [Google Scholar] [CrossRef]
- Putterill, J.; Varkonyi-Gasic, E. FT and florigen long-distance flowering control in plants. Curr. Opin. Plant Biol. 2016, 33, 77–82. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, Y.; Wu, X.; Bai, X.; Zhao, G. Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. BMC Genom. 2021, 22, 284. [Google Scholar] [CrossRef]
- Ishikawa, R.; Tamaki, S.; Yokoi, S.; Inagaki, N.; Shinomura, T.; Takano, M.; Shimamoto, K. Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell 2005, 17, 3326–3336. [Google Scholar] [CrossRef]
- Xu, M.; Yamagishi, N.; Zhao, C.; Takeshima, R.; Kasai, M.; Watanabe, S.; Kanazawa, A.; Yoshikawa, N.; Liu, B.; Yamada, T.; et al. The soybean-specific maturity Gene E1 Family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T Orthologs. Plant Physiol. 2015, 168, 1735–1746. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Sánchez, J.M.; Triozzi, P.M.; Alique, D.; Geng, F.; Perales, M. LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Curr. Biol. 2019, 29, 2402–2406. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, R.; Shinomura, T.; Takano, M.; Shimamoto, K. Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes Genet. Syst. 2009, 84, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Jishi, T.; Kimura, K.; Matsuda, R.; Fujiwara, K. Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology. Sci. Hortic. 2016, 198, 227–232. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Q.; Song, W.; Wang, L.; Guo, W.; Xue, X. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Hortic. 2017, 223, 44–52. [Google Scholar] [CrossRef]
- Jishi, T.; Matsuda, R.; Fujiwara, K. Blue light monochromatic irradiation for 12 hours in lighting pattern with combinations of blue and red light elongates young cos lettuce leaves and promotes growth under high daily light integral. Hortscience 2021, 56, 940–945. [Google Scholar] [CrossRef]
- Abidi, F.; Girault, T.; Douillet, O.; Guillemain, G.; Sintès, G.; Laffaire, M.; Ahmed, H.B.; Smiti, S.; Huché Thélier, L.; Leduc, N. Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biol. 2013, 15, 67–74. [Google Scholar] [CrossRef]
- Shimokawa, A.; Tonooka, Y.; Matsumoto, M.; Ara, H.; Suzuki, H.; Yamauchi, N.; Shigyo, M. Effect of alternating red and blue light irradiation generated by light emitting diodes on the growth of leaf lettuce. bioRxiv 2014. [Google Scholar] [CrossRef]
- Ohtake, N.; Ishikura, M.; Suzuki, H.; Yamori, W.; Goto, E. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce. Hortscience 2018, 53, 1804–1809. [Google Scholar] [CrossRef]
- Kuno, Y.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Effects of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (Lactuca sativa L. “Greenwave”). Environ. Control Biol. 2017, 55, 129–135. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Y.; Duan, F.; Du, X.; Yang, Q.; Zheng, Y. Improvement of the growth and nutritional quality of two-leaf-color pak choi by supplemental alternating red and blue light. Hortscience 2021, 56, 118–125. [Google Scholar] [CrossRef]
- Takasu, S.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Photosynthesis and morphology of leaf lettuce (Lactuca sativa L. cv. Greenwave) grown under alternating irradiation of red and blue light. Environ. Control Biol. 2019, 57, 93–98. [Google Scholar] [CrossRef]
- Chen, X.L.; Wang, L.C.; Li, Y.L.; Yang, Q.; Guo, W.Z. Alternating red and blue irradiation affects carbohydrate accumulation and sucrose metabolism in butterhead lettuce. Sci. Hortic. 2022, 302, 111177. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; Carreño-Quintero, N.; Vreugdenhil, D.; Millenaar, F.F.; van Ieperen, W. Sucrose and starch content negatively correlates with PSII maximum quantum efficiency in tomato (Solanum lycopersicum) exposed to abnormal light/dark cycles and continuous light. Plant Cell Physiol. 2017, 58, 1339–1349. [Google Scholar] [CrossRef]
- Sánchez-Lamas, M.; Lorenzo, C.D.; Cerdán, P.D. Bottom-up assembly of the phytochrome network. PLoS Genet. 2016, 12, e1006413. [Google Scholar] [CrossRef]
- Gärtner, W. In-planta expression: Searching for the genuine chromophores of cryptochrome-3 from Arabidopsis thaliana. Photochem. Photobiol. 2017, 93, 382–384. [Google Scholar] [CrossRef]
- Casal, J.J. Phytochromes, cryptochromes, phototropin: Photoreceptor interactions in plants. Photochem. Photobiol. 2000, 71, 1–11. [Google Scholar] [CrossRef]
- Chang, C.-L.; Hong, G.-F.; Li, Y.-L. A supplementary lighting and regulatory scheme using a multi-wavelength light emitting diode module for greenhouse application. Light. Res. Technol. 2014, 46, 548–566. [Google Scholar] [CrossRef]
- Yanagi, T.; Okamoto, K.; Takita, S. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. In Proceedings of the International Symposium on Plant Production in Closed Ecosystems 440, Narita, Japan, 26–29 August 1996; pp. 117–122. [Google Scholar] [CrossRef]
- Samuoliene, G.; Urbonaviciute, A.; Duchovskis, P.; Bliznikas, Z.; Vitta, P.; Arturas, Z. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. Hortscience 2009, 44, 1857–1860. [Google Scholar] [CrossRef]
- Yamada, C.; Ohyama, K.; Kozai, T. Photosynthetic photon flux control for reducing electric energy consumption in a closed-type transplant production system. Environ. Control Biol. 2010, 38, 255–261. [Google Scholar] [CrossRef]
- Goto, F.; Shoji, K.; Johkan, M.; Hashida, S.N.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hortscience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Nicole, C.; Charalambous, F.; Martinakos, S.; van de Voort, S.; Li, Z.; Verhoog, M.; Krijn, M. Lettuce growth and quality optimization in a plant factory. Acta Hort. 2016, 1134, 231–238. [Google Scholar] [CrossRef]
- Chang, C.; Chang, K. The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting. Sci. Hortic. 2014, 179, 78–84. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Sirtautas, R.; Novičkovas, A.; Duchovskis, P. Supplementary Red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. J. Food Agric. Environ. 2011, 9, 271–274. [Google Scholar] [CrossRef]
- Yang, X.; Hu, X.; Zhang, M.; Xu, J.; Ren, R.; Liu, G.; Yao, X.; Chen, X. Effect of low night temperature on graft union formation in watermelon grafted onto bottle gourd rootstock. Sci. Hortic. 2016, 212, 29–34. [Google Scholar] [CrossRef]
- Turquois, N.; Malone, M. Non-destructive assessment of developing hydraulic connections in the graft union of tomato. J. Exp. Bot. 1996, 47, 701–707. [Google Scholar] [CrossRef]
- Muneer, S.; Ko, C.H.; Soundararajan, P.; Manivnnan, A.; Park, Y.G.; Jeong, B.R. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities. PLoS ONE 2017, 10, e0120899. [Google Scholar] [CrossRef]
- Vu, N.; Kim, Y.; Kang, H.K.; Kim, K.I. Effect of red LEDs during healing and acclimatization process on the survival rate and quality of grafted tomato seedlings. Prot. Hortic. Plant Fact. 2014, 23, 43–49. [Google Scholar] [CrossRef]
- Lee, J.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Mun, B.; Jang, Y.; Goto, E.; Ishigami, Y.; Chun, C. Measurement system of whole-canopy carbon dioxide exchange rates in grafted cucumber transplants in which scions were exposed to different water regimes using a semi-open multi-chamber. Sci. Hortic. 2011, 130, 607–614. [Google Scholar] [CrossRef]
- Lee, K.M.; Lim, C.S.; Muneer, S.; Jeong, B.R. Functional vascular connections and light quality effects on tomato grafted unions. Sci. Hortic. 2016, 201, 306–317. [Google Scholar] [CrossRef]
- Bantis, F.; Panteris, E.; Dangitsis, C.; Carrera, E.; Koukounaras, A. Blue light promotes vascular reconnection, while red light boosts the physiological response and quality of grafted watermelon seedlings. Sci. Rep. 2021, 11, 21754. [Google Scholar] [CrossRef]
- Dong, C.; Fu, Y.; Liu, G.; Liu, H. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Adv. Space Res. 2014, 53, 1557–1566. [Google Scholar] [CrossRef]
- Smith, H. Light Quality, Photoperception, and plant strategy. Annu. Rev. Plant Physiol. 1982, 33, 481–518. [Google Scholar] [CrossRef]
- Fankhauser, C.; Batschauer, A. Shadow on the plant: A strategy to exit. Cell 2016, 164, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Tarkowská, D.; Clarke, J.L.; Blystad, D.; Gislerød, H.R.; Torre, S.; Olsen, J.E. Impact of end-of-day red and far-red light on plant morphology and hormone physiology of poinsettia. Sci. Hortic. 2014, 174, 77–86. [Google Scholar] [CrossRef]
- Mizuno, T.; Oka, H.; Yoshimura, F.; Ishida, K.; Yamashino, T. Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2015, 79, 1987–1994. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yang, Q.; Tao, L.I. Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs. J. Integr. Agric. 2019, 18, 62–69. [Google Scholar] [CrossRef]
- Kubota, C.; Chia, P.L. End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. Hortscience 2010, 45, 1501–1506. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Zhang, M.; Runkle, E.S. Regulating flowering and extension growth of poinsettia using red and far-red light-emitting diodes for end-of-day lighting. Hortscience 2019, 54, 323–327. [Google Scholar] [CrossRef]
- Graham, H.A.H.; Decoteau, D.R. Young watermelon plant growth responses to end-of-day red and far-red light are affected by direction of exposure and plant part exposed. Sci. Hortic. 1997, 69, 41–49. [Google Scholar] [CrossRef]
- Martínez García, J.F.; Santes, C.M.; García Martínez, J.L. The end-of-day far-red irradiation increases gibberellin A1 content in cowpea (Vigna sinensis) epicotyls by reducing its inactivation. Physiol. Plant. 2000, 108, 426–434. [Google Scholar] [CrossRef]
- Chen, S.; Marcelis, L.F.; Heuvelink, E. Far-red radiation increases flower and fruit abortion in sweet pepper (Capsicum annuum L.). Sci. Hortic. 2022, 305, 111386. [Google Scholar] [CrossRef]
- Percival, A.C.; Craver, J.K. End-of-day far-red lighting with a low daily light integral increases stem length but does not promote early leaf expansion for Petunia× hybrida seedlings. Hortscience 2023, 58, 1010–1017. [Google Scholar] [CrossRef]
- Lund, J.B.; Blom, T.J.; Aaslyng, J.M. End-of-day lighting with different red/far-red ratios using light-emitting diodes affects plant growth of Chrysanthemum× morifolium Ramat. ‘Coral Charm’. Hortscience 2007, 42, 1609–1611. [Google Scholar] [CrossRef]
- Rajapakse, N.C.; Mcmahon, M.J.; Kelly, J.W. End of day far-red light reverses height reduction of chrysanthemum induced by CuSO4 spectral filters. Sci. Hortic. 1993, 53, 249–259. [Google Scholar] [CrossRef]
- Sumitomo, K.; Yamagata, A.; Shima, K.; Kishimoto, M.; Hisamatsu, T. Effect of end-of-day far-red light treatment on flowering and stem elongation in certain cut flowers. In Bulletin of the National Institute of Floricultural Science; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Li, Y.; Shi, R.; Jiang, H.; Wu, L.; Zhang, Y.; Song, S.; Su, W.; Liu, H. End-of-day LED lightings influence the leaf color, growth and phytochemicals in two cultivars of lettuce. Agronomy 2020, 10, 1475. [Google Scholar] [CrossRef]
- Xiong, J.; Patil, G.G.; Moe, R.; Torre, S. Effects of diurnal temperature alternations and light quality on growth, morphogenesis and carbohydrate content of Cucumis sativus L. Sci. Hortic. 2010, 128, 54–60. [Google Scholar] [CrossRef]
- Shibuya, T.; Izumi, M.; Endo, R. Effects of end-of-day far-red light and relative humidity on flowering and stem elongation of petunia (Petunia× hybrida) seedlings. Sci. Hortic. 2024, 324, 112600. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, Y.; Zhang, Y.; Bian, Z.; Fanourakis, D.; Yang, Q.; Li, T. Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light. Sci. Hortic. 2019, 257, 108725. [Google Scholar] [CrossRef]
- Yang, Z.; Kubota, C.; Chia, P.; Kacira, M. Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation. Sci. Hortic. 2012, 136, 81–86. [Google Scholar] [CrossRef]
- Kawada, J.; Funakoshi, K. Classification of Japanese chrysanthemum, Chrysanthemum morifolium, as a basis for the regulation of vegetative growth and flowering. Agric. Hortic. 1988, 63, 985–990. [Google Scholar]
- Eguchi, T.; Hernandez, R.; Kubota, C. End-of-day far-red lighting combined with blue-rich light environment to mitigate intumescence injury of two interspecific tomato rootstocks. Acta Hort. 2016, 1134, 163–167. [Google Scholar] [CrossRef]
- Kegge, W.; Ninkovic, V.; Glinwood, R.; Welschen, R.A.M.; Voesenek, L.A.C.J.; Pierik, R. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann. Bot. 2015, 116, 96–970. [Google Scholar] [CrossRef]
- Franklin, K.A. Shade avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef]
- Franklin, K.A.; Quail, P.H. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 2010, 61, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, C.; Chen, M. Transposing phytochrome into the nucleus. Trends Plant Sci. 2008, 13, 596–601. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef] [PubMed]
- de Wit, M.; Karin, L.; Christian, F. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. New Phytol. 2015, 208, 198–209. [Google Scholar] [CrossRef]
- Galvão, V.C.; Fankhauser, C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 2015, 34, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Karayekov, E.; Galvão, V.C.; Ren, H.; Casal, J.J.; Fankhauser, C. Shade promotes phototropism through phytochrome B-controlled auxin production. Curr. Biol. 2016, 26, 3280–3287. [Google Scholar] [CrossRef]
- Yang, D.; Seaton, D.D.; Krahmer, J.; Halliday, K.J. Photoreceptor effects on plant biomass, resource allocation, and metabolic state. Proc. Natl. Acad. Sci. USA 2016, 113, 7667–7672. [Google Scholar] [CrossRef]
- Krahmer, J.; Abbas, A.; Mengin, V.; Ishihara, H.; Romanowski, A.; Furniss, J.J.; Moraes, T.A.; Krohn, N.; Annunziata, M.G.; Feil, R. Phytochromes control metabolic flux, and their action at the seedling stage determines adult plant biomass. J. Exp. Bot. 2021, 72, 3263–3278. [Google Scholar] [CrossRef]
- Romanowski, A.; Furniss, J.J.; Hussain, E.; Halliday, K.J. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. Plant Physiol. 2021, 186, 1220–1239. [Google Scholar] [CrossRef] [PubMed]
- Dubois, P.G.; Olsefski, G.T.; Flint-Garcia, S.; Setter, T.L.; Hoekenga, O.A.; Brutnell, T.P. Physiological and genetic characterization of end-of-day far-red light response in maize seedlings. Plant Physiol. 2010, 154, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Ferrer, J.; Ljung, K.; Pojer, F.; Hong, F.; Long, J.A.; Li, L.; Moreno, J.E.; Bowman, M.E.; Ivans, L.J.; et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 2008, 133, 164–176. [Google Scholar] [CrossRef]
- Morelli, G.; Ruberti, I. Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol. 2000, 122, 621–626. [Google Scholar] [CrossRef]
- Hisamatsu, T.; King, R.W.; Helliwell, C.A.; Koshioka, M. The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol. 2005, 138, 1106–1116. [Google Scholar] [CrossRef]
- Hisamatsu, T.; Sumitomo, K.; Shimizu, H. End-of-day far-red treatment enhances responsiveness to gibberellins and promotes stem extension in chrysanthemum. J. Hortic. Sci. Biotechnol. 2015, 83, 695–700. [Google Scholar] [CrossRef]
- Hussain, E. Molecular Mechanism Through Which Phytochrome b Controls Leaf Blade Cell Division in Arabidopsis thaliana: Light Control of Leaf Cell Division. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, Q.; Wang, Z.; He, J.; Liu, X.; Xu, Y.; Li, Q. Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture. Agriculture 2025, 15, 1630. https://doi.org/10.3390/agriculture15151630
Liu X, Sun Q, Wang Z, He J, Liu X, Xu Y, Li Q. Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture. Agriculture. 2025; 15(15):1630. https://doi.org/10.3390/agriculture15151630
Chicago/Turabian StyleLiu, Xinying, Qiying Sun, Zheng Wang, Jie He, Xin Liu, Yaliang Xu, and Qingming Li. 2025. "Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture" Agriculture 15, no. 15: 1630. https://doi.org/10.3390/agriculture15151630
APA StyleLiu, X., Sun, Q., Wang, Z., He, J., Liu, X., Xu, Y., & Li, Q. (2025). Innovative Application Strategies of Light-Emitting Diodes in Protected Horticulture. Agriculture, 15(15), 1630. https://doi.org/10.3390/agriculture15151630