Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = aerobic profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 245 KiB  
Article
Examining the Relationship Between Increased Vegetable Consumption and Lifestyle Characteristics Among School-Aged Children: A Descriptive Study
by Konstantinos D. Tambalis, Dimitris Tampalis, Demosthenes B. Panagiotakos and Labros S. Sidossis
Appl. Sci. 2025, 15(15), 8665; https://doi.org/10.3390/app15158665 (registering DOI) - 5 Aug 2025
Abstract
The purpose of this study was to examine vegetable consumption and its relationship with lifestyle characteristics among children and adolescents. Data from a health survey administered to a representative sample of 177,091 schoolchildren between the ages of 8 and 17 were employed in [...] Read more.
The purpose of this study was to examine vegetable consumption and its relationship with lifestyle characteristics among children and adolescents. Data from a health survey administered to a representative sample of 177,091 schoolchildren between the ages of 8 and 17 were employed in this observational, cross-sectional investigation. Physical activity level, screen time, and sleeping patterns were assessed using self-completed questionnaires. Vegetable consumption and dietary habits were analyzed using the Mediterranean Diet Quality Index for Children and Adolescents. Participants consuming vegetables more than once daily were categorized as consumers vs. non-consumers. Physical education teachers measured anthropometric and physical fitness factors. Descriptive statistics and binary logistic regression analysis were conducted, and the odds ratio with the corresponding 95% confidence interval was calculated and adjusted for confounders. Vegetables were consumed once or more times a day by more females than males (25.5% vs. 24.0%, p < 0.001). In both sexes, vegetable consumers slept more, ate healthier, spent less time on screens, and had better anthropometric and aerobic fitness measurements than non-consumers. Healthy eating practices, such as regularly consuming fruits, legumes, nuts, and dairy products, were strongly correlated with vegetable intake. For every one-year increase in age, the odds of being a vegetable consumer decreased by 8% and 10% in boys and girls, respectively. Overweight/obese participants had lower odds of being a vegetable consumer by 20%. Increased screen time, inadequate physical activity, and insufficient sleeping hours decreased the odds of being a vegetable consumer by 22%, 30%, and 25%, respectively (all p-values < 0.001). Overall, a healthier lifestyle profile was associated with higher vegetable intake for both sexes among children and adolescents. Full article
(This article belongs to the Special Issue Potential Health Benefits of Fruits and Vegetables—4th Edition)
9 pages, 408 KiB  
Article
Less Time, Same Insight? Evaluating Short Functional Tests as Substitutes for the Six-Minute Walk Test and the Reliability and Validity of the 2MWT, 3MWT, and 1MSTS in Bariatric Surgery Candidates with Obesity
by Hamdiye Turan, Zeynal Yasaci and Hasan Elkan
Healthcare 2025, 13(15), 1883; https://doi.org/10.3390/healthcare13151883 - 1 Aug 2025
Viewed by 138
Abstract
Background and Objectives: Functional capacity assessment is essential in bariatric surgery candidates, but the Six-Minute Walk Test (6MWT) may be limited by fatigue, joint pain, and spatial constraints in individuals with severe obesity. Shorter tests such as the Two-Minute Walk Test (2MWT), Three-Minute [...] Read more.
Background and Objectives: Functional capacity assessment is essential in bariatric surgery candidates, but the Six-Minute Walk Test (6MWT) may be limited by fatigue, joint pain, and spatial constraints in individuals with severe obesity. Shorter tests such as the Two-Minute Walk Test (2MWT), Three-Minute Walk Test (3MWT), and One-Minute Sit-to-Stand Test (1MSTS) have been proposed as alternatives, yet comparative data in this population remain scarce. We aimed to evaluate the validity, reliability, and clinical utility of the 2MWT, 3MWT, and 1MSTS as substitutes for the 6MWT in patients preparing for bariatric surgery. Materials and Methods: In this cross-sectional study, 142 obese adults (BMI ≥ 30 kg/m2) underwent standardized 2MWT, 3MWT, 6MWT, and 1MSTS protocols. Correlation, linear regression, test–retest reliability (ICC), and ROC analyses were used to determine each test’s correlation and discriminative accuracy for impaired exercise tolerance (6MWT < 450 m). Results: The 3MWT showed the strongest correlation with the 6MWT (r = 0.930) and the highest explained variance (R2 = 0.865), especially in individuals with BMI > 50. It also exhibited excellent reliability (ICC > 0.9) and a strong ROC profile (AUC = 0.931; 212 m cut-off). The 2MWT demonstrated acceptable concurrent validity but slightly lower agreement. The 1MSTS showed weak and inconsistent associations with 6MWT performance, suggesting limited value in assessing aerobic capacity in this population. Conclusions: The 3MWT appears to be a valid, reliable, and clinically practical alternative to the 6MWT in individuals with severe obesity. The 2MWT may be used when time or patient tolerance is limited. The 1MSTS, while safe and simple, may reflect strength and coordination more than aerobic capacity, limiting its utility in this context. Full article
Show Figures

Figure 1

23 pages, 1372 KiB  
Article
Immunization with Complete Freund’s Adjuvant Reveals Trained Immunity-like Features in A/J Mice
by Kiruthiga Mone, Shraddha Singh, Fatema Abdullatif, Meghna Sur, Mahima T. Rasquinha, Javier Seravalli, Denise K. Zinniel, Indranil Mukhopadhyay, Raul G. Barletta, Teklab Gebregiworgis and Jay Reddy
Vaccines 2025, 13(7), 768; https://doi.org/10.3390/vaccines13070768 - 21 Jul 2025
Viewed by 618
Abstract
Background/Objectives: Freund’s adjuvants induce different immunomodulatory effects, but their underlying molecular mechanisms are unclear. In this study, we investigated whether the immune-stimulating effects of the complete Freund’s adjuvant (CFA) involve the mechanisms of trained immunity (TI). Methods: We examined bone marrow cells (BMCs) [...] Read more.
Background/Objectives: Freund’s adjuvants induce different immunomodulatory effects, but their underlying molecular mechanisms are unclear. In this study, we investigated whether the immune-stimulating effects of the complete Freund’s adjuvant (CFA) involve the mechanisms of trained immunity (TI). Methods: We examined bone marrow cells (BMCs) isolated from CFA-immunized A/J mice to address this question. Incomplete Freund’s adjuvant (IFA) and Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin (BCG) served as negative and positive controls, respectively. We evaluated cytokine profiles, metabolic, and epigenetic changes. Results: First, BMCs from all groups except saline showed varied levels of IL-1β, IL-6, and TNF-α. But expression of CCL5 and CXCL10 was significantly elevated only in the CFA and BCG groups. Transcriptionally, significant elevations were noted for TNF-α and IL-1β in the CFA and BCG groups, whereas CXCL10, IL-6, and IL-10 were upregulated in the CFA and BCG groups, respectively. Second, while BMCs from the BCG group expressed the markers of both the M1 and M2 macrophages, no clear trends were noted in the CFA and IFA groups. Third, cell lysates from the CFA group revealed metabolic reprogramming in the BMCs. Specifically, we observed an increased level of lactate, indicative of aerobic glycolysis, which is implicated in TI, and this was also detected in the IFA group. Fourth, epigenetic analysis revealed histone enrichment in the promoter region of TNF-α, in the CFA group, but to a lesser degree than the BCG group. However, no epigenetic changes were observed in the IFA group. Conclusions: Our data provide new insights into the mechanisms of Freund’s adjuvants and the immunomodulatory effects of CFA could involve the features of TI. Full article
(This article belongs to the Special Issue Recent Advances in Vaccine Adjuvants and Formulation)
Show Figures

Figure 1

14 pages, 2150 KiB  
Brief Report
Transcriptional Signatures of Aerobic Exercise-Induced Muscle Adaptations in Humans
by Pranav Iyer, Diana M. Asante, Sagar Vyavahare, Lee Tae Jin, Pankaj Ahluwalia, Ravindra Kolhe, Hari Kashyap, Carlos Isales and Sadanand Fulzele
J. Funct. Morphol. Kinesiol. 2025, 10(3), 281; https://doi.org/10.3390/jfmk10030281 - 19 Jul 2025
Viewed by 437
Abstract
Background: Aerobic exercise induces a range of complex molecular adaptations in skeletal muscle. However, a complete understanding of the specific transcriptional changes following exercise warrants further research. Methods: This study aimed to identify gene expression patterns following acute aerobic exercise by [...] Read more.
Background: Aerobic exercise induces a range of complex molecular adaptations in skeletal muscle. However, a complete understanding of the specific transcriptional changes following exercise warrants further research. Methods: This study aimed to identify gene expression patterns following acute aerobic exercise by analyzing Gene Expression Omnibus (GEO) datasets. We performed a comparative analysis of transcriptional profiles of related genes in two independent studies, focusing on both established and novel genes involved in muscle physiology. Results: Our analysis revealed ten consistently upregulated and eight downregulated genes across both datasets. The upregulated genes were predominantly associated with mitochondrial function and cellular respiration, including MDH1, ATP5MC1, ATP5IB, and ATP5F1A. Conversely, downregulated genes such as YTHDC1, CDK5RAP2, and PALS2 were implicated in vascular structure and cellular organization. Importantly, our findings also revealed novel exercise-responsive genes not previously characterized in this context. Among these, MRPL41 and VEGF were significantly upregulated and are associated with p53-mediated apoptotic signaling and fatty acid metabolism, respectively. Novel downregulated genes included LIMCH1, CMYA5, and FOXJ3, which are putatively involved in cytoskeletal dynamics and muscle fiber type specification. Conclusions: These findings enhance our understanding of the transcriptional landscape of skeletal muscle following acute aerobic exercise and identify novel molecular targets for further investigation in the fields of exercise physiology and metabolic health. Full article
(This article belongs to the Special Issue Advances in Physiology of Training—2nd Edition)
Show Figures

Figure 1

15 pages, 1280 KiB  
Article
The Fermentative and Nutritional Effects of Limonene and a Cinnamaldehyde–Carvacrol Blend on Total Mixed Ration Silages
by Isabele Paola de Oliveira Amaral, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Tatiane Fernandes, Yara América da Silva, Mariany Felex de Oliveira, Ana Carolina Amorim Orrico, Ronnie Coêlho de Andrade and Giuliano Reis Pereira Muglia
Fermentation 2025, 11(7), 415; https://doi.org/10.3390/fermentation11070415 - 18 Jul 2025
Viewed by 463
Abstract
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one [...] Read more.
This study evaluated the effects of different doses of limonene essential oil (LEO) and a blend of cinnamaldehyde and carvacrol (BCC) on the fermentative quality and chemical–bromatological composition of total mixed ration (TMR) silages. Two independent trials were conducted, each focused on one additive, using a completely randomized design with four treatments (0, 200, 400, and 600 mg/kg of dry matter), replicated across two seasons (summer and autumn), with five replicates per treatment per season. The silages were assessed for their chemical composition, fermentation profile, aerobic stability (AS), and storage losses. In the LEO trial, the dry matter (DM) content increased significantly by 0.047% for each mg/kg added. Dry matter recovery (DMR) peaked at 97.9% at 473 mg/kg (p < 0.01), while lactic acid (LA) production reached 5.87% DM at 456 mg/kg. Ethanol concentrations decreased to 0.13% DM at 392 mg/kg (p = 0.04). The highest AS value (114 h) was observed at 203.7 mg/kg, but AS declined slightly at the highest LEO dose (600 mg/kg). No significant effects were observed for the pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), or non-fiber carbohydrates (NFCs). In the BCC trial, DMR reached 98.2% at 548 mg/kg (p < 0.001), and effluent losses decreased by approximately 20 kg/ton DM. LA production peaked at 6.41% DM at 412 mg/kg (p < 0.001), and AS reached 131 h at 359 mg/kg. BCC increased NDF (from 23.27% to 27.73%) and ADF (from 35.13% to 41.20%) linearly, while NFCs and the total digestible nutrients (TDN) decreased by 0.0007% and 0.039% per mg of BCC, respectively. In conclusion, both additives improved the fermentation efficiency by increasing LA and reducing losses. LEO was more effective for DM retention and ethanol reduction, while BCC improved DMR and AS, with distinct effects on fiber and energy fractions. Full article
Show Figures

Figure 1

18 pages, 456 KiB  
Article
Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial
by Omer Špirtović, Ilma Čaprić, Borko Katanić, Karuppasamy Govindasamy, Vlad Adrian Geantă, Viorel Petru Ardelean, Zerina Salihagić, Aldina Ajdinović and Mima Stanković
Appl. Sci. 2025, 15(13), 7489; https://doi.org/10.3390/app15137489 - 3 Jul 2025
Viewed by 755
Abstract
Sedentary behavior among young women is increasingly associated with adverse metabolic and cardiovascular outcomes. The aim of this randomized controlled trial was to evaluate and compare the effects of three structured group fitness programs on anthropometric parameters, body composition, and lipid profile in [...] Read more.
Sedentary behavior among young women is increasingly associated with adverse metabolic and cardiovascular outcomes. The aim of this randomized controlled trial was to evaluate and compare the effects of three structured group fitness programs on anthropometric parameters, body composition, and lipid profile in overweight young women (N = 111, age 18–25, BMI ≥ 25). Participants were assigned to mix aerobics (E1, n = 27), kickbox aerobics (E2, n = 28), step aerobics (E3, n = 27), or a control group (C, n = 29). Each intervention lasted 12 weeks, with sessions conducted three times per week, each lasting 60 min. The results were analyzed using repeated measures ANOVA. Significant reductions were observed in body weight (−4.8 kg in E1, p < 0.01), waist circumference (−5.3 cm in E1, p < 0.001), and body fat percentage (−3.6% in E1, p < 0.01). High-density lipoprotein (HDL) increased by 7.4 mg/dL (p < 0.01), while low-density lipoprotein (LDL), total cholesterol, and triglycerides decreased by 12.1 mg/dL, 18.6 mg/dL, and 19.4 mg/dL, respectively (all p < 0.01). The most pronounced overall improvements were found in the mix aerobics group. In contrast, the control group showed significant deterioration in most variables, including a 2.1 kg weight gain and a 6.3 mg/dL increase in total cholesterol (p < 0.05). These findings confirm the superior effectiveness of mix aerobics as a non-pharmacological intervention to improve body composition (notably through reductions in body weight, fat percentage, and waist circumference) and cardiovascular biomarkers (such as increased HDL and decreased LDL, total cholesterol, and triglycerides) in young overweight women. Compared to kickboxing and step aerobics, mix aerobics consistently achieved the greatest improvements across all measured parameters, making it the most comprehensive and effective option among the three programs tested. Full article
(This article belongs to the Special Issue Exercise, Fitness, Human Performance and Health: 2nd Edition)
Show Figures

Figure 1

11 pages, 224 KiB  
Article
Training vs. Competition: Load and Intensity Differences Between Multi-Feeding and Simulated Match Play in High-Level Youth Badminton Players
by Francisco Alvarez-Dacal, Alejandro Rodríguez-Fernández, Alba Herrero-Molleda, Marina Gil-Calvo, Ernest Baiget, Jordi Seguí-Urbaneja and Jaime Fernández-Fernández
Appl. Sci. 2025, 15(13), 7451; https://doi.org/10.3390/app15137451 - 2 Jul 2025
Viewed by 514
Abstract
Badminton is an intermittent sport with a diverse exercise profile that stresses both aerobic and anaerobic energy systems. The aim of this study was to compare the internal and external load profiles of multi-feeding (MF) drills and simulated match play (SMP) in elite [...] Read more.
Badminton is an intermittent sport with a diverse exercise profile that stresses both aerobic and anaerobic energy systems. The aim of this study was to compare the internal and external load profiles of multi-feeding (MF) drills and simulated match play (SMP) in elite junior badminton players, and to explore potential sex-based differences. Forty-two players (24 males (age 17.4 ± 2.6 years, training experience 9.9 ± 1.8 years) and 18 females (age 16.9 ± 2.9 years, training experience 9.4 ± 2.1 years)) completed MF and SM sessions while external load (e.g., relative distance, explosive distance, relative jumps) and internal load (heart rate [HR], session rating of perceived exertion [sRPE]) variables were recorded using inertial measurement units and HR monitors. Two-way ANOVA revealed that MF induced significantly greater external (p < 0.05) and internal (p < 0.001) loads compared to SM, with large effect sizes. Male players showed markedly higher jump frequency (1.60 n/min vs. 0.80 n/min) and maximum speed (19.80 km/h vs. 15.80 km/h), although HR and sRPE values were similar between sexes (p > 0.05), suggesting that female athletes may experience greater relative physiological load. These findings highlight the importance of using MF drills to target specific conditioning goals and reinforce the need for individualized training strategies considering sex differences. Full article
13 pages, 255 KiB  
Communication
Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis
by Ionica Iancu, Sebastian Alexandru Popa, Janos Degi, Alexandru Gligor, Ionela Popa, Vlad Iorgoni, Paula Nistor, Kálmán Imre, Ileana Nichita and Viorel Herman
Antibiotics 2025, 14(7), 650; https://doi.org/10.3390/antibiotics14070650 - 26 Jun 2025
Viewed by 600
Abstract
Bovine uterine infections remain a widespread challenge in dairy production systems, contributing to reduced fertility and overall herd performance. Background/Objectives: Postpartum uterine infections significantly affect dairy cattle fertility and productivity. This study aimed to identify aerobic bacterial pathogens associated with clinical endometritis [...] Read more.
Bovine uterine infections remain a widespread challenge in dairy production systems, contributing to reduced fertility and overall herd performance. Background/Objectives: Postpartum uterine infections significantly affect dairy cattle fertility and productivity. This study aimed to identify aerobic bacterial pathogens associated with clinical endometritis in Romanian dairy cows and evaluate their antimicrobial resistance profiles. Methods: Uterine swab samples (n = 348) were collected from clinically affected cows across multiple farms. Bacteria were isolated and identified using conventional culture methods and MALDI-TOF MS. Antimicrobial susceptibility testing was performed using the VITEK® 2 system with GN 96 and GP 79 cards. Statistical analysis was conducted using the chi-square (χ2) test. Results: A total of 387 bacterial isolates were recovered, with over half of the samples showing mixed bacterial contamination. Escherichia coli was the most frequently identified pathogen (44.9%), followed by Staphylococcus spp. (17.3%) and Klebsiella spp. (14.5%). Gram-negative isolates showed high resistance to tetracycline and ampicillin, while retaining susceptibility to imipenem and polymyxin B. Among Gram-positive isolates, Streptococcus spp. were highly susceptible to β-lactams, while Staphylococcus spp. showed moderate resistance to penicillin and macrolides. Conclusions: This study highlights the prevalence of key aerobic pathogens and their resistance profiles in Romanian dairy herds. These findings support the need for targeted diagnostics and rational antimicrobial use to improve uterine health and therapeutic outcomes in dairy cattle. Full article
(This article belongs to the Special Issue Detection of Bacteria and Antibiotics Surveillance in Livestock)
12 pages, 613 KiB  
Article
Effectiveness of Prolonged Application of Super High-Intensity Continuous Training—Team Case Study
by Miloš M. Milošević, Jovana Popović, Milivoj Dopsaj and Milenko B. Milosević
J. Funct. Morphol. Kinesiol. 2025, 10(3), 241; https://doi.org/10.3390/jfmk10030241 - 25 Jun 2025
Viewed by 248
Abstract
Background: Super High-Intensity Continuous Training (SHCT) is a type of aerobic training program that combines high intensity with continuous loads, such as running for 20 min at 75%, 80%, or even 95% of the velocity at maximal oxygen uptake. Recent studies show significant [...] Read more.
Background: Super High-Intensity Continuous Training (SHCT) is a type of aerobic training program that combines high intensity with continuous loads, such as running for 20 min at 75%, 80%, or even 95% of the velocity at maximal oxygen uptake. Recent studies show significant positive effects, but the consequences of prolonged use remain unknown. Purpose: This study aims to investigate and evaluate the effects of prolonged application of the SHCT model in elite team handball players. Method: For this purpose, a field-based quasi-experiment was organized using the SHCT training model on 14 professional female team handball players competing in the first national league who participated in 16 weeks of SHCT training during the competition season. Results: After the application of SHCT training, the increases in the parameters of the aerobic profile (distance run in Cooper’s 12 min run test, maximum rate of oxygen consumption, value of the maximum relative oxygen consumption, running speed for which maximum rate of oxygen consumption occurs) reached from 25.4% to 35.2%. The effect size of these changes was η2p > 0.90 and was significant at the p < 0.001 level. Conclusions: The investigated aerobic model is effective. Therefore, its use is recommended for designing aerobic training for elite teams and the general sports population. Full article
Show Figures

Figure 1

19 pages, 5609 KiB  
Article
Effects of Chronic Low-Salinity Stress on Growth, Survival, Antioxidant Capacity, and Gene Expression in Mizuhopecten yessoensis
by Haoran Xiao, Xin Jin, Zitong Wang, Qi Ye, Weiyan Li, Lingshu Han and Jun Ding
Biology 2025, 14(7), 759; https://doi.org/10.3390/biology14070759 - 25 Jun 2025
Viewed by 338
Abstract
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth [...] Read more.
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth performance, antioxidant capacity, and gene expression profile of M. yessoensis using a 60-day salinity gradient experiment. S33 represents the control treatment with normal seawater salinity (33‰), while S30, S28, and S26 represent experimental groups with progressively lower salinities of 30‰, 28‰, and 26‰, respectively. A decline in salinity was accompanied by an increase in oxygen consumption. The S26 group exhibited a higher ammonia excretion rate (2.73 μg/g·h) than other groups, indicating intensified nitrogen metabolism. Growth was inhibited under low-salinity conditions. The S33 group exhibited greater weight gain (16.7%) and shell growth (8.4%) compared to the S26 group (11.6% and 6%), which also showed a substantially higher mortality rate (46%) compared to the control (13%). At 28‰, antioxidant enzyme activities (T-AOC, SOD, CAT, POD) were elevated, indicating a moderate level of stress. However, at the lowest salinity (26‰), these indicators decreased, reflecting the exhaustion of the antioxidant systems and indicating that the mollusks’ adaptive capacity had been exceeded, leading to a state of stress fatigue. NAD-MDH activity was elevated in the S26 group, reflecting enhanced aerobic metabolism under stress. Transcriptome analysis revealed 564 differentially expressed genes (DEGs) between the S33 and S26 groups. Functional enrichment analysis indicated that these DEGs were mainly associated with immune and stress response pathways, including NF-κB, TNF, apoptosis, and Toll/Imd signaling. These genes are involved in key metabolic processes, such as alanine, aspartate, and glutamate metabolism. Genes such as GADD45, ATF4, TRAF3, and XBP1 were upregulated, contributing to stress repair and antioxidant responses. Conversely, the expressions of CASP3, IKBKA, BIRC2/3, and LBP were downregulated, potentially mitigating apoptosis and inflammatory responses. These findings suggest that M. yessoensis adapts to chronic low-salinity stress through the activation of antioxidant systems, modulation of immune responses, and suppression of excessive apoptosis. This study provides new insights into the molecular mechanisms underlying salinity adaptation in bivalves and offers valuable references for scallop aquaculture and selective breeding programs. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

30 pages, 15481 KiB  
Article
Effects of 12 Weeks of Chromium, Phyllanthus emblica Fruit Extract, and Shilajit Supplementation on Markers of Cardiometabolic Health, Fitness, and Weight Loss in Men and Women with Risk Factors to Metabolic Syndrome Initiating an Exercise and Diet Intervention: A Randomized Double-Blind, Placebo-Controlled Trial
by Victoria Martinez, Kay McAngus, Broderick L. Dickerson, Megan Leonard, Elena Chavez, Jisun Chun, Megan Lewis, Dante Xing, Drew E. Gonzalez, Choongsung Yoo, Joungbo Ko, Heather Rhodes, Hudson Lee, Ryan J. Sowinski, Christopher J. Rasmussen and Richard B. Kreider
Nutrients 2025, 17(12), 2042; https://doi.org/10.3390/nu17122042 - 19 Jun 2025
Viewed by 2562
Abstract
Background: Exercise and nutritional interventions are often recommended to help manage risk related to metabolic syndrome (MetSyn). The co-ingestion of Phyllanthus emblica (PE) with trivalent chromium (Cr) has been purported to improve the bioavailability of chromium and enhance endothelial function, reduce platelet aggregation, [...] Read more.
Background: Exercise and nutritional interventions are often recommended to help manage risk related to metabolic syndrome (MetSyn). The co-ingestion of Phyllanthus emblica (PE) with trivalent chromium (Cr) has been purported to improve the bioavailability of chromium and enhance endothelial function, reduce platelet aggregation, and help manage blood glucose as well as lipid levels. Shilajit (SJ) has been reported to have anti-inflammatory, adaptogenic, immunomodulatory, and lipid-lowering properties. This study evaluated whether dietary supplementation with Cr, PE, and SJ, or PE alone, during an exercise and diet intervention may help individuals with risk factors to MetSyn experience greater benefits. Methods: In total, 166 sedentary men and women with at least two markers of metabolic syndrome participated in a randomized, placebo-controlled, parallel-arm, and repeated-measure intervention study, of which 109 completed the study (48.6 ± 10 yrs., 34.2 ± 6 kg/m2, 41.3 ± 7% fat). All volunteers participated in a 12-week exercise program (supervised resistance and endurance exercise 3 days/week with walking 10,000 steps/day on non-training days) and were instructed to reduce energy intake by −5 kcals/kg/d. Participants were matched by age, sex, BMI, and body mass for the double-blind and randomized supplementation of a placebo (PLA), 500 mg of PE (PE-500), 1000 mg/d of PE (PE-1000), 400 µg of trivalent chromium (Cr) with 6 mg of PE and 6 mg of SJ (Cr-400), or 800 µg of trivalent chromium with 12 mg of PE and 12 mg of SJ (Cr-800) once a day for 12 weeks. Data were obtained at 0, 6, and 12 weeks of supplementation, and analyzed using general linear model multivariate and univariate analyses with repeated measures, pairwise comparisons, and mean changes from the baseline with 95% confidence intervals (CIs). Results: Compared to PLA responses, there was some evidence (p < 0.05 or approaching significance, p > 0.05 to p < 0.10) that PE and/or Cr with PE and SJ supplementation improved pulse wave velocity, flow-mediated dilation, platelet aggregation, insulin sensitivity, and blood lipid profiles while promoting more optimal changes in body composition, strength, and aerobic capacity. Differences among groups were more consistently seen at 6 weeks rather than 12 weeks. While some benefits were seen at both dosages, greater benefits were more consistently observed with PE-1000 and Cr-800 ingestion. Conclusions: The results suggest that PE and Cr with PE and SJ supplementation may enhance some exercise- and diet-induced changes in markers of health in overweight individuals with at least two risk factors to MetSyn. Registered clinical trial #NCT06641596. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

21 pages, 2472 KiB  
Article
Integrating Soil Physicochemical Properties and Microbial Functional Prediction to Assess Land-Use Impacts in a Cold-Region Wetland Ecosystem
by Junnan Ding and Shaopeng Yu
Life 2025, 15(6), 972; https://doi.org/10.3390/life15060972 - 18 Jun 2025
Viewed by 512
Abstract
This study investigated the effects of land-use change and wetland restoration on soil microbial community diversity, structure, and function in a cold-region wetland ecosystem. Soil samples from six land-use types were analyzed for key physicochemical and biochemical properties, including soil water content, pH, [...] Read more.
This study investigated the effects of land-use change and wetland restoration on soil microbial community diversity, structure, and function in a cold-region wetland ecosystem. Soil samples from six land-use types were analyzed for key physicochemical and biochemical properties, including soil water content, pH, total nitrogen, soil organic carbon (SOC), and enzymatic activities. Significant differences in carbon and nitrogen availability were observed, with restored wetland soils showing higher SOC and moisture levels, while agricultural soils exhibited elevated nitrate concentrations. Bacterial community composition was estimated based on 16S ribosomal RNA gene sequencing, and microbial functional profiles were predicted using Functional Annotation of Prokaryotic Taxa (FAPROTAX) and BugBase. Bacterial communities were dominated by Proteobacteria, Actinobacteriota, and Acidobacteriota, with significant shifts among land-use types. Redundancy analysis revealed that SOC, SWC, total nitrogen (TN), and pH were key drivers of community differentiation. Functional prediction showed enrichment of fermentation and anaerobic metabolism in restored wetlands, while aerobic carbon metabolism dominated in agricultural and forest soils. These findings demonstrate that wetland restoration improves both taxonomic and functional diversity. While ecosystem multifunctionality and resilience were not directly quantified, the observed increases in microbial richness, functional group diversity, and enzymatic activity suggest enhanced ecological capacity and potential for system stability in cold-region wetlands. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
Aerobic Exercise Alleviates Cardiac Dysfunction Correlated with Lipidomics and Mitochondrial Quality Control
by Kunzhe Li, Sujuan Li, Hao Jia, Yinping Song, Zhixin Chen and Youhua Wang
Antioxidants 2025, 14(6), 748; https://doi.org/10.3390/antiox14060748 - 17 Jun 2025
Viewed by 611
Abstract
Cardiac adaptations induced by aerobic exercise have been shown to reduce the risk of cardiovascular disease, and the autonomic nervous system is closely associated with the development of cardiovascular disease. Aerobic exercise intervention has been shown to enhance cardiac function and mitigate myocardial [...] Read more.
Cardiac adaptations induced by aerobic exercise have been shown to reduce the risk of cardiovascular disease, and the autonomic nervous system is closely associated with the development of cardiovascular disease. Aerobic exercise intervention has been shown to enhance cardiac function and mitigate myocardial fibrosis and hypertrophy in heart failure mice. Further insights reveal that cardiomyocytes experiencing chronic heart failure undergo modifications in their lipidomic profile, including remodeling of multiple myocardial membrane phospholipids. Notably, there is a decrease in the total content of cardiolipin, as well as in the levels of total lysolipid CL and the CL (22:6). These alterations disrupt mitochondrial quality control processes, leading to abnormal expressions of proteins such as Drp1, MFN2, OPA1, and BNIP3, thereby resulting in a disrupted mitochondrial dynamic network. Whereas aerobic exercise ameliorated mitochondrial damage to a large extent by activating parasympathetic nerves, this beneficial effect was accomplished by modulating myocardial membrane phospholipid remodeling and restoring the mitochondrial dynamic network. In conclusion, aerobic exercise activated the parasympathetic state in mice and attenuated lipid peroxidation and oxidative stress injury, thereby maintaining mitochondrial dynamic homeostasis and improving cardiac function. Full article
Show Figures

Figure 1

15 pages, 18614 KiB  
Article
Exercise Remodels Akkermansia-Associated Eicosanoid Metabolism to Alleviate Intestinal Senescence: Multi-Omics Insights
by Chunxia Yu, Xuanyu Liu, Yitong Li, Silin Li, Yating Huang, Sujuan Liu, Heng Shao, Yanna Shen and Li Fu
Microorganisms 2025, 13(6), 1379; https://doi.org/10.3390/microorganisms13061379 - 13 Jun 2025
Viewed by 470
Abstract
Aerobic exercise mitigates age-related intestinal senescence through gut microbiota modulation, but the underlying mechanism has remained unclear. In this study, we performed 16S rRNA sequencing of gut contents from young, old, and old exercise C57BL/6J mice to assess exercise-induced alterations in microbiota community [...] Read more.
Aerobic exercise mitigates age-related intestinal senescence through gut microbiota modulation, but the underlying mechanism has remained unclear. In this study, we performed 16S rRNA sequencing of gut contents from young, old, and old exercise C57BL/6J mice to assess exercise-induced alterations in microbiota community structure. Differential taxa analyses were applied to reveal age-associated bacterial signatures, gut barrier integrity, and systemic inflammation. Additionally, untargeted metabolomic profiling was employed to characterize gut metabolic profiles and reveal the key pathways through differential metabolite enrichment analyses. Aging significantly exacerbated the senescence-associated secretory phenotypes and the overgrowth of pathogenic bacteria in mice. However, aerobic exercise ameliorated these age-related deteriorations, restored gut microbial homeostasis, and reduced intestinal permeability. Notably, exercise intervention led to a significant increase in Akkermansia abundance in feces, establishing this mucin-degrading bacterium as a prominent exercise-responsive microbe. Metabolomic profiling identified eicosanoid metabolism as the most significantly perturbed pathway, and chronic exercise was found to regulate 14,15-Dhet levels. Our multi-omics integration confirmed that exercise is a potent modulator of the gut–microbiota–metabolite axis during aging. Elucidating the “Akkermansia–eicosanoid signaling” axis provided mechanistic insights into how exercise promotes healthy aging, identifying novel targets for anti-aging strategies via microbiota. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Graphical abstract

15 pages, 698 KiB  
Article
Physiological Benchmarks and Player Profiling in Elite Football: A Role-Specific Analysis Using T-Scores
by Vincenzo Manzi, Daniele A. Cardinale, Marco Alfonso Perrone, Antonio Bovenzi, Ferdinando Iellamo, Cristian Savoia, Giuseppe Caminiti and Francesco Laterza
Sports 2025, 13(6), 181; https://doi.org/10.3390/sports13060181 - 10 Jun 2025
Viewed by 2148
Abstract
Physiological characteristics such as VO2max, running economy (RE), maximal aerobic speed (MAS), maximal sprinting speed (MSS), anaerobic speed reserve (ASR), and player profiling (based on MSS and MAS) have been proven to be important for training prescriptions in football. However, previous [...] Read more.
Physiological characteristics such as VO2max, running economy (RE), maximal aerobic speed (MAS), maximal sprinting speed (MSS), anaerobic speed reserve (ASR), and player profiling (based on MSS and MAS) have been proven to be important for training prescriptions in football. However, previous studies on player profiling have neglected the absolute values of MSS and MAS. The objectives of this study were to compare the aforementioned physiological variables among player roles, create benchmarks, and provide normative data to help coaches categorize players, ultimately proposing a new player profiling method. We analyzed 195 male professional football players (50 forwards, 59 midfielders, 44 full-backs, and 42 center-backs). Multivariate analysis of variance with Tukey’s post hoc tests revealed positional differences. Center-backs exhibited lower VO2max than midfielders and full-backs. Both center-backs and forwards showed poorer RE and MAS compared to midfielders and full-backs. Full-backs achieved higher MSS than midfielders and center-backs, and forwards outperformed center-backs. Finally, midfielders demonstrated lower ASR than all other positions. Benchmarks based on T-scores for all variables were provided. Finally, in the new profiling method proposed—also based on T-scores—players were classified as “speed”, “endurance”, or “hybrid” if their MAS and/or MSS T-score exceeded 60, “in development” if both were below 45, and “average” if both scores were between 45 and 60 without any value above 60. The normative data provided can assist coaches in identifying specific areas for improvement in players’ physical conditioning—particularly valuable for youth athletes or those returning from injury. Additionally, the new profiling method offers insights into individual player characteristics, enabling more tailored and effective training interventions. Full article
Show Figures

Figure 1

Back to TopTop