Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Outcome Measures
2.3. Training Program
2.4. Statistical Analysis
3. Results
3.1. Reliability
3.2. Normality Testing
3.3. Analysis of Variance
4. Discussion
4.1. Strengths of the Study
4.2. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary lifestyle: Overview of updated evidence of potential health risks. Korean J. Fam. Med. 2020, 41, 365. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Lavie, C.J.; Rognmo, Ø. Global physical activity levels-Need for intervention. Prog. Cardiovasc. Dis. 2019, 62, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, E.G.; Edwardson, C.L.; Achana, F.A.; Davies, M.J.; Gorely, T.; Gray, L.J.; Khunti, K.; Yates, T.; Biddle, S.J.H. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis. Diabetologia 2012, 55, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Capric, I.; Stankovic, M.; Spirtovic, O.; Corovic, M.; Mujanovic, D.; Mojsilovic, Z.; Jelaska, I.; Zilic-Fiser, S. Cardiovascular Fitness in Normal Weight and Obese Children and Adolescents—A Systematic Review of Studies Published After 2000s. Int. J. Morphol. 2023, 41, 1852–1862. [Google Scholar] [CrossRef]
- Riaz, M. Lodhi SBeyond BMI: Exploring, obesity trends in the south Asian region. Obes. Pillars 2024, 13, 100156. [Google Scholar] [CrossRef]
- Islam, A.S.; Sultana, H.; Refat, M.N.H.; Farhana, Z.; Kamil, A.A.; Rahman, M.M. The global burden of overweight-obesity and its association with economic status, benefiting from STEPs survey of WHO member states: A meta-analysis. Prev. Med. Rep. 2024, 46, 102882. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Ortega, F.; Jiménez-Pavón, D.; Ruiz, J.; Vicente-Rodríguez, G.; Bueno, M.; Marcos, A.; Gómez-Martínez, S.; Urzanqui, A.; et al. Health-related fitness in adolescents: Underweight, and not only overweight, as an influencing factor. The AVENA study. Scand. J. Med. Sci. Sports 2010, 20, 418–427. [Google Scholar] [CrossRef]
- Nikolaidis, P.T. Body mass index and body fat percentage are associated with decreased physical fitness in adolescent and adult female volleyball players. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 22. [Google Scholar]
- Macek, P.; Biskup, M.; Terek-Derszniak, M.; Stachura, M.; Krol, H.; Gozdz, S.; Zak, M. Optimal body fat percentage cut-off values in predicting the obesity-related cardiovascular risk factors: A cross-sectional cohort study. Diabetes Metab. Syndr. Obes. 2020, 13, 1587–1597. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Špirtović, O.; Bajrić, S.; Hadžić, R. Influence of programmed exercise on body composition indicators of recreational exercisers. Sports Sci. Health 2021, 22, 237–244. [Google Scholar] [CrossRef]
- Stojiljković, S.; Djordjević-Nikić, M.; Macura, M. (Eds.) Influence of Individual Programmed Exercises and Nutrition on the Body Composition of Recreational Population. In Abstract Book: 10th Annual Congress; European College of Sport Science: Rimini, Italy, 2005. [Google Scholar]
- Jorgić, B.; Pantelić, S.; Milanović, Z.; Kostić, R. The effects of physical exercise on the body composition of the elderly: A systematic review. Facta Univ.-Ser. Phys. Educ. Sport 2011, 9, 439–453. [Google Scholar]
- Paoli, A.; Gentil, P.; Moro, T.; Marcolin, G.; Bianco, A. Resistance training with single vs. multi-joint exercises at equal total load volume: Effects on body composition, cardiorespiratory fitness, and muscle strength. Front. Physiol. 2017, 8, 1105. [Google Scholar] [CrossRef] [PubMed]
- Osei-Tutu, K.B.; Campagna, P.D. The effects of short-vs. long-bout exercise on mood, VO2max., and percent body fat. Prev. Med. 2005, 40, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Darsini, D.; Hamidah, H.; Notobroto, H.B.; Cahyono, E.A. Health risks associated with high waist circumference: A systematic review. J. Public Health Res. 2020, 9, 94–100. [Google Scholar] [CrossRef]
- Elsayed, E.F.; Tighiouart, H.; Weiner, D.E.; Griffith, J.; Salem, D.; Levey, A.S.; Sarnak, M.J. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. Am. J. Kidney Dis. 2008, 52, 49–57. [Google Scholar] [CrossRef]
- Destra, E.; Anggraeni, N.; Firmansyah, Y.; Santoso, A. Waist to hip ratio in Cardiovascular Disease Risk: A Review of the Literature. MAHESA Malahayati Health Stud. J. 2023, 3, 1770–1781. [Google Scholar] [CrossRef]
- Bajpeyi, S.; Reed, M.A.; Molskness, S.; Newton, C.; Tanner, C.J.; McCartney, J.S.; Houmard, J.A. Effect of short-term exercise training on intramyocellular lipid content. Appl. Physiol. Nutr. Metab. 2012, 37, 822–828. [Google Scholar] [CrossRef]
- Haxhi, J.; di Palumbo, A.S.; Sacchetti, M. Exercising for metabolic control: Is timing important? Ann. Nutr. Metab. 2013, 62, 14–25. [Google Scholar] [CrossRef]
- Mei, L.; Chen, Q.; Ge, L.; Zheng, G.; Chen, J. Systematic review of Chinese traditional exercise baduanjin modulating the blood lipid metabolism. Evid.-Based Complement. Altern. Med. 2012, 2012, 282131. [Google Scholar] [CrossRef]
- Lee, C.H.; Cheung, B.; Yi, G.-H.; Oh, B.; Oh, Y.H. Mobile health, physical activity, and obesity: Subanalysis of a randomized controlled trial. Medicine 2018, 97, e12309. [Google Scholar] [CrossRef] [PubMed]
- Kasch, J.; Schumann, S.; Schreiber, S.; Klaus, S.; Kanzleiter, I. Beneficial effects of exercise on offspring obesity and insulin resistance are reduced by maternal high-fat diet. PLoS ONE 2017, 12, e0173076. [Google Scholar]
- Mohr, M.; Lindenskov, A.; Holm, P.; Nielsen, H.; Mortensen, J.; Weihe, P.; Krustrup, P. Football training improves cardiovascular health profile in sedentary, premenopausal hypertensive women. Scand. J. Med. Sci. Sports 2014, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.E.; Fortaleza, A.C.; Neves, L.M.; Buonani, C.; Picolo, M.R.; Diniz, T.A.; Kalva-Filho, C.A.; Papoti, M.; Lira, F.S.; Junior, I.F.F. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. J. Strength Cond. Res. 2016, 30, 226–234. [Google Scholar] [CrossRef]
- Herbert, C. Enhancing mental health, well-being and active lifestyles of university students by means of physical activity and exercise research programs. Front. Public Health 2022, 10, 849093. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Montagnana, M.; Ballestrieri, F.; Guidi, G.C. Comparison of the lipid profile and lipoprotein (a) between sedentary and highly trained subjects. Clin. Chem. Lab. Med. (CCLM) 2006, 44, 322–326. [Google Scholar] [CrossRef]
- Naternicola, N. Fitness: Steps to Success; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Aleksandrović, M. The effects of physical exercise on reducing body weight and body composition of obese middle aged people. A systematic review. HealthMed 2012, 6, 2175–2189. [Google Scholar]
- Spirtovic, O.; Capric, I.; Stankovic, M.; Djordjevic, D.; Corovic, M.; Katanic, B.; Jelaska, I. The Effects of Step Aerobics on Anthropometric Characteristics Transformation and Body Composition in Young Females. Int. J. Morphol. 2024, 42, 1423–1428. [Google Scholar] [CrossRef]
- Kennedy-Armbruster, C.; Yoke, M. Methods of Group Exercise Instruction; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Špirtović, O.; Čaprić, I.; Stanković, M.; Đorđević, D.; Murić, B.; Kahrović, I.; Mujanović, R.; Mekić, R.; Katanić, B.; Jelaska, I.; et al. The effects of preventive aerobics mix on body composition in healthy adult women. Front. Physiol. 2023, 14, 1132619. [Google Scholar] [CrossRef]
- Nikić, N.; Milenković, D. Efficiency of step aerobic program in younger women. Acta Medica Median. 2013, 52, 25–34. [Google Scholar] [CrossRef]
- Kazemi, N.; Khosravi, N.; Kazemi, F. The Effect of a Period of Fitness-Kickboxing and Fitness-TRX Training on Some Anthropometric Indices and Cardiovascular Risk Factors in Overweight Women. J. Health 2022, 13, 123–133. [Google Scholar] [CrossRef]
- Biernat, E.; Stupnicki, R.; Gajewski, A. International physical activity questionnaire (IPAQ)–polish version. Phys. Educ. Sport 2007, 51, 47–54. [Google Scholar]
- Silva VSd Vieira, M.F.S. International Society for the Advancement of Kinanthropometry (ISAK) Global: International accreditation scheme of the competent anthropometrist. Rev. Bras. Cineantropometria Desempenho Hum. 2020, 22, e70517. [Google Scholar] [CrossRef]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.; Pontifex, M.B.; Pivarnik, J.M. Reliability and validity of commercially available low-cost bioelectrical impedance analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef]
- Barranco-Ruiz, Y.; Ramírez-Vélez, R.; Martínez-Amat, A.; Villa-González, E. Effect of two choreographed fitness group-workouts on the body composition, cardiovascular and metabolic health of sedentary female workers. Int. J. Environ. Res. Public Health 2019, 16, 4986. [Google Scholar] [CrossRef]
- Barranco-Ruiz, Y.; Villa-González, E. Choreographic group-based fitness classes improve cardiometabolic health-related anthropometric indices and blood lipids profile in overweight sedentary women. Sustainability 2021, 13, 972. [Google Scholar] [CrossRef]
- Bjelica, B. Effects of group fitness programs on the body composition of women. Facta Univ. Ser. Phys. Educ. Sport 2020, 18, 345–354. [Google Scholar]
- Kostrzewa-Nowak, D.; Nowak, R.; Jastrzębski, Z.; Zarębska, A.; Bichowska, M.; Drobnik-Kozakiewicz, I.; Radzimiński, Ł.; Leońska-Duniec, A.; Ficek, K.; Cięszczyk, P. Effect of 12-week-long aerobic training programme on body composition, aerobic capacity, complete blood count and blood lipid profile among young women. Biochem. Medica 2015, 25, 103–113. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163, Erratum in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef]
- Avdović, A.; Jevremović, V. Discrete Parameter-Free Zone Distribution and Its Application in Normality Testing. Axioms 2023, 12, 1087. [Google Scholar] [CrossRef]
- Aloui, G.; Souhail, H.; Hayes, L.D.; Bouhafs, E.G.; Chelly, M.S.; Schwesig, R. Effects of combined plyometric and short sprints training on athletic performance of male U19 soccer players. Front. Psychol. 2021, 12, 714016. [Google Scholar] [CrossRef] [PubMed]
- Tobias, S.; Carlson, J.E. Brief report: Bartlett’s test of sphericity and chance findings in factor analysis. Multivar. Behav. Res. 1969, 4, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Charzewski, P.; Starzyk, A. Endurance Training for Cardiovascular Health: Insights into Risk Reduction and Heart Disease Prevention. Qual. Sport 2025, 37, 58217. [Google Scholar] [CrossRef]
- Širić, V.; Prelčec, S.; Brčić, B. Utjecaj programiranog tjelesnog vježbanja na postotak tjelesne mastiff. Stručni Časopis Edukac. Rekreac. Sport Rij. 2005, 38–42. [Google Scholar]
- Stojiljković, S.; Mandarić, S.; Todorović, K.; Mitić, D. The effects of the’omnibus’ aerobics application on women’s body composition. Fizička Kult. 2010, 64, 59–67. [Google Scholar]
- Obrovac, S. Analiza Promjena u Sastavu Tijela i Pojedinim Motoričkim Sposobnostima pod Utjecajem Šest Tjednog Programa Vježbanja. Master’s Thesis, University of Zagreb, Zagreb, Croatia, 2015. [Google Scholar]
- Pantelic, S.; Milanovic, Z.; Sporis, G.; Stojanovic-Tosic, J. Effects of a Twelve-Week Aerobic Dance Exercises on Body Compositions Parameters in Young Women. Int. J. Morphol. 2013, 31, 1243–1250. [Google Scholar] [CrossRef]
- Hrgetić, M.; Dadić, M.; Milanović, M.; Skoblar, J. Utjecaj tromjesečnog fitness programa vježbanja na antropološki status žena srednje životne dobi. Zb. Rad. Zagreb Hrvat. Kineziol. Savez 2016, 354–357. Available online: https://www.bib.irb.hr:8443/1062291/download/1062291.354-Hrgetic.pdf (accessed on 30 June 2025).
- Kyröläinen, H.; Hackney, A.C.; Salminen, R.; Repola, J.; Häkkinen, K.; Haimi, J. Effects of combined strength and endurance training on physical performance and biomarkers of healthy young women. J. Strength Cond. Res. 2018, 32, 1554–1561. [Google Scholar] [CrossRef]
- Bellicha, A.; van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obes. Rev. 2021, 22, e13256. [Google Scholar] [CrossRef]
- Davis, M.E.; Blake, C.; Perrotta, C.; Cunningham, C.; O’Donoghue, G. Impact of training modes on fitness and body composition in women with obesity: A systematic review and meta-analysis. Obesity 2022, 30, 300–319. [Google Scholar] [CrossRef]
- Chavarrias, M.; Carlos-Vivas, J.; Barrantes-Martín, B.; Pérez-Gómez, J. Effects of 8-week of fitness classes on blood pressure, body composition, and physical fitness. J. Sports Med. Phys. Fit. 2019, 59, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C.; Hamadeh, M.J.; Glover, A.W.; Raha, S.; Samjoo, I.A.; Tarnopolsky, M.A. Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free Radic. Biol. Med. 2008, 45, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Hayashi, S.; Yoshida, A.; Naito, M. Acute effects of postprandial aerobic exercise on glucose and lipoprotein metabolism in healthy young women. J. Atheroscler. Thromb. 2013, 20, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Zaer Ghodsi, N.; Zolfaghari, M.R.; Fattah, A. The Impact of High Intensity Interval Training On Lipid Profile, Inflammatory Markers and Anthropometric Parameters in Inactive Women. Med. Lab. J. 2016, 10, 56–60. [Google Scholar] [CrossRef]
- Dandanell, S.; Elbe, A.-M.; Pfister, G.; Elsborg, P.; Whelge, J. Relationship between volition, physical activity and weight loss maintenance: Study rationale, design, methods and baseline characteristics. Scand. J. Public Health 2017, 45, 299–304. [Google Scholar] [CrossRef]
- Yamaner, E.; Demirkıran, B.; Özcan, E. Effects of a Six-Week Aerobic Exercise Training Program on Lipid Profiles in Sedentary Women. Int. J. Disabil. Sports Health Sci. 2024, 7, 564–569. [Google Scholar] [CrossRef]
- Di Blasio, A.; Izzicupo, P.; D’Angelo, E.; Melanzi, S.; Bucci, I.; Gallina, S.; Di Baldassarre, A.; Napolitano, G. Effects of patterns of walking training on metabolic health of untrained postmenopausal women. J. Aging Phys. Act. 2014, 22, 482–489. [Google Scholar] [CrossRef]
- LeMura, L.M.; von Duvillard, S.P.; Andreacci, J.; Klebez, J.M.; Chelland, S.A.; Russo, J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur. J. Appl. Physiol. 2000, 82, 451–458. [Google Scholar] [CrossRef]
- Spiering, B.A.; Mujika, I.; Sharp, M.A.; Foulis, S.A. Maintaining physical performance: The minimal dose of exercise needed to preserve endurance and strength over time. J. Strength Cond. Res. 2021, 35, 1449–1458. [Google Scholar] [CrossRef]
Mix Aerobics | Kickbox Aerobics | Step Aerobics | ||||||
---|---|---|---|---|---|---|---|---|
Part of the Training | Duration (% of Time) | Activities/Content | Part of the Training | Duration (% of Time) | Activities/Content | Part of the Training | Duration (% of Time) | Activities/Content |
Warm-up | 6 min | Walking, running in place, dynamic jumps, hand and leg coordination to the rhythm of music. | Warm-up | 6 min | Light running in place, jump rope, arm and leg circles with rhythmic music. | Warm-up | 6 min | Walking in place, marching, basic step movements with slow music. |
Main part/aerobics | 33 min | Combination of basic aerobics steps (Basic step, V-step, Leg lift, Over the top, Repeater). | Main part/aerobics | 33 min | Basic punches: Jab, Cross, Front kick, Side kick. | Main part/aerobics | 33 min | Basic steps: Basic step, V-step, Alternating basic step. |
Interval segments: high intensity (10 min)—jumps, circular punches, steps with pace changes. | Interval segments: combinations of punches and jumps. | Combinations with arms: raising arms to the rhythm of the music. | ||||||
Dynamic exercises for balance and strength: High knees + circular punches. | Advanced steps: leg lift, turn step, over the top, repeater. | |||||||
Cool-down | 6 min | Static stretching: stretching leg, back, and arm muscles. Focus on relaxation. | Cool-down | 6 min | Static stretching: Glute Stretch, inner thigh stretch, quadriceps stretch, hamstrings stretch, shoulder stretch. Focus on relaxation. | Cool-down | 6 min | Static stretching: stretching leg, back, and arm muscles. Body relaxation and deep breathing to restore balance after the intense part of the training. |
Variable | ICC (95%) | Coefficient of Variation (%) |
---|---|---|
BW | 0.982 (0.948–0.994) | 8.262 |
BMI | 0.988 (0.965–0.996) | 9.175 |
TSF-TH | 0.989 (0.968–0.996) | 30.475 |
TSF-UA | 0.985 (0.956–0.995) | 55.238 |
WC | 0.962 (0.892–0.987) | 8.638 |
BF% | 0.984 (0.952–0.994) | 14.912 |
MM% | 0.957 (0.874–0.985) | 13.687 |
TSF-AB | 0.983 (0.951–0.994) | 34.038 |
TG | 0.924 (0.776–0.974) | 2.438 |
HDL | 0.976 (0.928–0.992) | 3.800 |
LDL | 0.811 (0.447–0.935) | 1.725 |
TC | 0.907 (0.728–0.968) | 1.225 |
Variable | Group | Mean of 1st Measurement | Mean of 2nd Measurement | d |
---|---|---|---|---|
BW | K | 75.82 ± 6.08 | 77.83 ± 6.15 | 0.90 *** |
E1 | 79.11 ± 6.95 | 73.94 ± 6.40 | 2.86 *** | |
E2 | 80.03 ± 6.95 | 75.24 ± 6.85 | 2.54 *** | |
E3 | 78.90 ± 6.06 | 74.32 ± 5.53 | 2.54 *** | |
BMI | K | 26.11 ± 1.99 | 26.45 ± 2.00 | 0.89 *** |
E1 | 26.40 ± 2.68 | 24.69 ± 2.63 | 3.09 *** | |
E2 | 26.95 ± 2.58 | 25.36 ± 2.72 | 2.81 *** | |
E3 | 26.74 ± 2.16 | 25.21 ± 2.23 | 2.90 *** | |
TSF-TH | K | 19.71 ± 6.29 | 19.89 ± 6.17 | 0.50 ** |
E1 | 19.62 ± 5.90 | 16.53 ± 5.49 | 2.72 *** | |
E2 | 18.86 ± 5.39 | 16.12 ± 4.96 | 2.20 *** | |
E3 | 17.41 ± 4.94 | 15.00 ± 4.47 | 1.88 *** | |
TSF-UA | K | 12.07 ± 6.47 | 12.21 ± 6.27 | 0.28 |
E1 | 12.47 ± 6.00 | 9.18 ± 5.50 | 1.98 *** | |
E2 | 11.53 ± 6.25 | 8.48 ± 5.42 | 1.66 *** | |
E3 | 11.66 ± 6.07 | 9.09 ± 5.33 | 1.92 *** | |
WC | K | 86.69 ± 6.51 | 87.50 ± 6.60 | 3.19 *** |
E1 | 84.71 ± 7.29 | 77.09 ± 7.39 | 2.28 *** | |
E2 | 83.09 ± 7.12 | 76.37 ± 6.84 | 1.99 *** | |
E3 | 81.21 ± 7.52 | 75.72 ± 6.78 | 2.13 *** | |
BF% | K | 37.30 ± 5.47 | 37.98 ± 5.43 | 0.96 *** |
E1 | 37.94 ± 6.00 | 33.54 ± 6.00 | 2.87 *** | |
E2 | 36.59 ± 5.54 | 33.08 ± 5.11 | 2.72 *** | |
E3 | 35.81 ± 4.94 | 33.13 ± 4.38 | 1.69 *** | |
MM% | K | 21.21 ± 3.07 | 21.08 ± 3.28 | 0.13 |
E1 | 20.80 ± 3.52 | 24.60 ± 2.97 | 3.28 *** | |
E2 | 21.48 ± 3.41 | 25.10 ± 2.80 | 2.46 *** | |
E3 | 22.15 ± 2.77 | 24.71 ± 2.68 | 2.06 *** | |
TSF-AB | K | 15.42 ± 5.14 | 15.81 ± 5.39 | 0.62 ** |
E1 | 15.84 ± 6.01 | 11.65 ± 5.21 | 2.96 *** | |
E2 | 15.07 ± 4.95 | 11.98 ± 4.83 | 2.58 *** | |
E3 | 13.59 ± 2.67 | 10.69 ± 3.14 | 2.78 *** | |
TG | K | 1.25 ± 0.03 | 1.26 ± 0.02 | 0.43 |
E1 | 1.30 ± 0.04 | 0.96 ± 0.03 | 28.03 *** | |
E2 | 1.29 ± 0.04 | 1.01 ± 0.02 | 17.41 *** | |
E3 | 1.27 ± 0.03 | 1.07 ± 0.02 | 9.66 *** | |
HDL | K | 1.40 ± 0.06 | 1.40 ± 0.05 | 0.10 |
E1 | 1.45 ± 0.07 | 1.81 ± 0.07 | 40.68 *** | |
E2 | 1.42 ± 0.07 | 1.73 ± 0.06 | 48.74 *** | |
E3 | 1.41 ± 0.06 | 1.64 ± 0.04 | 9.73 *** | |
LDL | K | 2.58 ± 0.04 | 2.59 ± 0.04 | 0.63 * |
E1 | 2.57 ± 0.04 | 2.11 ± 0.06 | 14.65 *** | |
E2 | 2.58 ± 0.03 | 2.20 ± 0.04 | 17.03 *** | |
E3 | 2.58 ± 0.05 | 2.16 ± 0.03 | 8.67 *** | |
TC | K | 4.58 ± 0.05 | 4.59 ± 0.05 | 0.60 ** |
E1 | 4.57 ± 0.06 | 3.74 ± 0.07 | 16.81 *** | |
E2 | 4.58 ± 0.05 | 3.93 ± 0.06 | 25.18 *** | |
E3 | 4.57 ± 0.04 | 3.87 ± 0.04 | 31.61 *** |
Variable | |||
---|---|---|---|
Group | Measurement | Group × Measurement | |
BW | 0.879 (0.006) | 0.004 (0.069) *** | 0.235 (0.037) |
BMI | 0.658 (0.014) | 0.012 (0.055) ** | 0.340 (0.029) |
TSF-TH | 0.098 (0.054) * | 0.045 (0.035) ** | 0.674 (0.013) |
TSF-UA | 0.555 (0.013) | 0.043 (0.035) ** | 0.688 (0.013) |
WC | <0.001 (0.177) *** | <0.001 (0.108) *** | 0.115 (0.050) |
BF% | 0.122 (0.049) | 0.012 (0.054) ** | 0.313 (0.031) |
MM% | 0.025 (0.078) ** | <0.001 (0.146) *** | 0.070 (0.060) * |
TSF-AB | 0.058 (0.063) * | 0.006 (0.066) *** | 0.318 (0.030) |
TG | <0.001 (0.725) *** | <0.001 (0.925) *** | <0.001 (0.825) *** |
HDL | <0.001 (0.684) *** | <0.001 (0.800) *** | <0.001 (0.580) *** |
LDL | <0.001 (0.829) *** | <0.001 (0.934) *** | <0.001 (0.827) *** |
TC | <0.001 (0.904) *** | <0.001 (0.965) *** | <0.001 (0.900) *** |
Variable | Pairs | Mean Difference | 95% CI for the Mean | |
---|---|---|---|---|
WC | K-E1 | 6.19 ** | 1.34 | 11.03 |
K-E2 | 7.36 ** | 2.51 | 12.21 | |
K-E3 | 8.63 ** | 3.78 | 13.47 | |
MM% | K-E2 | −2.15 * | −4.26 | −0.03 |
K-E3 | −2.29 * | −4.40 | −0.17 | |
TG | K-E1 | 0.13 ** | 0.11 | 0.15 |
K-E2 | 0.11 ** | 0.09 | 0.13 | |
K-E3 | 0.08 ** | 0.06 | 0.10 | |
K-E2 | −0.02 ** | −0.04 | 0 | |
K1-E3 | −0.05 ** | −0.06 | −0.03 | |
K2-E3 | −0.03 ** | −0.05 | −0.01 | |
HDL | K-E1 | −0.23 ** | −0.27 | −0.19 |
K-E2 | −0.18 ** | −0.22 | −0.14 | |
K-E3 | −0.13 ** | −0.17 | −0.09 | |
K-E2 | 0.05 ** | 0.02 | 0.09 | |
E1-E3 | 0.11 ** | 0.07 | 0.14 | |
E2-E3 | 0.05 ** | 0.01 | 0.09 | |
LDL | K-E1 | 0.24 ** | 0.21 | 0.27 |
K-E2 | 0.19 ** | 0.17 | 0.22 | |
K-E3 | 0.21 ** | 0.18 | 0.24 | |
E1-E2 | −0.05 ** | −0.08 | −0.02 | |
E1-E3 | −0.03 * | −0.06 | 0 | |
TC | K-E1 | 0.43 ** | 0.40 | 0.47 |
K-E2 | 0.33 ** | 0.29 | 0.37 | |
K-E3 | 0.37 ** | 0.33 | 0.40 | |
K-E2 | −0.10 ** | −0.14 | −0.07 | |
E1-E3 | −0.07 ** | −0.10 | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Špirtović, O.; Čaprić, I.; Katanić, B.; Govindasamy, K.; Geantă, V.A.; Ardelean, V.P.; Salihagić, Z.; Ajdinović, A.; Stanković, M. Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial. Appl. Sci. 2025, 15, 7489. https://doi.org/10.3390/app15137489
Špirtović O, Čaprić I, Katanić B, Govindasamy K, Geantă VA, Ardelean VP, Salihagić Z, Ajdinović A, Stanković M. Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial. Applied Sciences. 2025; 15(13):7489. https://doi.org/10.3390/app15137489
Chicago/Turabian StyleŠpirtović, Omer, Ilma Čaprić, Borko Katanić, Karuppasamy Govindasamy, Vlad Adrian Geantă, Viorel Petru Ardelean, Zerina Salihagić, Aldina Ajdinović, and Mima Stanković. 2025. "Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial" Applied Sciences 15, no. 13: 7489. https://doi.org/10.3390/app15137489
APA StyleŠpirtović, O., Čaprić, I., Katanić, B., Govindasamy, K., Geantă, V. A., Ardelean, V. P., Salihagić, Z., Ajdinović, A., & Stanković, M. (2025). Group Aerobic Exercise Improves Body Composition and Lipid Profile in Young Women with Elevated BMI: A Randomized Controlled Trial. Applied Sciences, 15(13), 7489. https://doi.org/10.3390/app15137489