Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = advanced high-strength steel (AHSS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7394 KiB  
Communication
Experimental Investigation of Delayed Fracture Initiation in Advanced High-Strength Steel Under Accelerated Bending
by Kyucheol Jeong, Jaewook Lee and Jonghun Yoon
Materials 2025, 18(14), 3415; https://doi.org/10.3390/ma18143415 - 21 Jul 2025
Viewed by 296
Abstract
Predicting bending fractures in advanced high-strength steel (AHSS) is challenging due to complex microstructural behaviors and strain rate dependencies, particularly in industrial forming processes. Current models and standards primarily focus on quasi-static tension or slow bending speeds, leaving a gap in understanding the [...] Read more.
Predicting bending fractures in advanced high-strength steel (AHSS) is challenging due to complex microstructural behaviors and strain rate dependencies, particularly in industrial forming processes. Current models and standards primarily focus on quasi-static tension or slow bending speeds, leaving a gap in understanding the accelerated failure of AHSS without necking. In this study, direct bending experiments were conducted on dual-phase, complex-phase, and martensitic AHSS grades under varying bending speeds and radii. Since the bending crack is irrelevant to the load drop, surface crack evolution was measured using three-dimensional surface profile analysis. The results showed that accelerated bending significantly delayed crack initiation across all tested materials, with small-radius bending showing reduced strain localization due to strain rate hardening. Larger-radius bending benefited primarily from increased fracture strain. Full article
(This article belongs to the Special Issue Advanced High-Strength Steels: Processing and Characterization)
Show Figures

Figure 1

26 pages, 4251 KiB  
Article
Cellular Automaton Simulation Model for Predicting the Microstructure Evolution of an Additively Manufactured X30Mn21 Austenitic Advanced High-Strength Steel
by Ashutosh Singh, Christian Haase and Luis A. Barrales-Mora
Metals 2025, 15(7), 770; https://doi.org/10.3390/met15070770 - 8 Jul 2025
Viewed by 392
Abstract
Additive manufacturing techniques, such as laser-based powder bed fusion of metals (PBF-LB/M), have now gained high industrial and academic interest. Despite its design flexibility and the ability to fabricate intricate components, LPBF has not yet reached its full potential, partly due to the [...] Read more.
Additive manufacturing techniques, such as laser-based powder bed fusion of metals (PBF-LB/M), have now gained high industrial and academic interest. Despite its design flexibility and the ability to fabricate intricate components, LPBF has not yet reached its full potential, partly due to the challenges associated with microstructure control. The precise manipulation of the microstructure in LPBF is a formidable yet highly rewarding endeavor, offering the capability to engineer components at a local level. This work introduces an innovative parallelized Cellular Automaton (CA) framework for modeling the evolution of the microstructure during the LPBF process. LPBF involves remelting and subsequent nucleation followed by crystal growth during solidification, which complicates and burdens microstructure simulations. In this research, a novel approach to nucleation seeding and crystal growth is implemented, focusing exclusively on the final stages of melting and solidification, enhancing the computational efficiency by 30%. This approach streamlines the simulation process, making it more efficient and effective. The developed model was employed to simulate the microstructure of an austenitic advanced high-strength steel (AHSS). The model was validated by comparing the simulation results qualitatively and quantitatively with the experimental data obtained under the same process parameters. The predicted microstructure closely aligned with the experimental findings. Simulations were also conducted at varying resolutions of CA cells, enabling a comprehensive study of their impact on microstructure evolution. Furthermore, the computational efficiency was critically evaluated. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

21 pages, 9556 KiB  
Article
DP600 Steel Stampability Analysis Through Microstructural Characterization by Electron Backscatter Diffraction and Nanoindentation
by Rafael Guetter Bohatch, Alex Raimundo de Oliveira, Chetan P. Nikhare, Ravilson Antonio Chemin Filho and Paulo Victor Prestes Marcondes
J. Manuf. Mater. Process. 2025, 9(7), 234; https://doi.org/10.3390/jmmp9070234 - 8 Jul 2025
Viewed by 418
Abstract
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry [...] Read more.
In recent decades, the automotive industry has faced challenges around improving energy efficiency, reducing pollutant emissions, increasing occupant safety, and reducing production costs. To solve these challenges, it is necessary to reduce the weight of vehicle bodies. In this way, the steel industry has developed more efficient metal alloys. To combine vehicle mass reduction with improved performance in deformations in cases of impact, a new family of advanced steels is present, AHSS (Advanced High-Strength Steels). However, this family of steels has lower formability and greater springback compared to conventional steels; if it is not properly controlled, it will directly affect the accuracy of the product and its quality. Different regions of a stamped component, such as the flange, the body wall, and the punch pole, are subjected to different states of stress and deformation, determined by numerous process variables, such as friction/lubrication and tool geometry, in addition to blank holder force and drawbead geometry, which induce the material to different deformation modes. Thus, it is understood that the degree of work hardening in each of these regions can be evaluated by grain morphology and material hardening, defining critical regions of embrittlement that, consequently, will affect the material’s stampability. This work aims to study the formability of the cold-formed DP600 steel sheets in the die radius region using a Modified Nakazima test, varying drawbead geometry, followed by a nanohardness evaluation and material characterization through the electron backscatter diffraction (EBSD). The main objective is to analyze the work hardening in the critical blank regions by applying these techniques. The nanoindentation evaluations were consistent in die radius and demonstrated the hardening influence, proving that the circular drawbead presented the most uniform hardness variation along the profile of the stamped blank and presented lower hardness values in relation to the other geometries, concluding that the drawbead attenuates this variation, contributing to better sheet formability, which corroborates the Forming Limit Curve results. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

22 pages, 2595 KiB  
Article
Optimization of Process Parameters for Advanced High-Strength Steel JSC980Y Automotive Part Using Finite Element Simulation and Deep Neural Network
by Aekkapon Sunanta and Surasak Suranuntchai
J. Manuf. Mater. Process. 2025, 9(6), 197; https://doi.org/10.3390/jmmp9060197 - 12 Jun 2025
Viewed by 554
Abstract
In the stamping process of automotive parts, springback is a major problem when using Advanced High-Strength Steel (AHSS). This phenomenon significantly impacts the shape accuracy of products and is difficult to control. This study aims to optimize process parameters such as blank holder [...] Read more.
In the stamping process of automotive parts, springback is a major problem when using Advanced High-Strength Steel (AHSS). This phenomenon significantly impacts the shape accuracy of products and is difficult to control. This study aims to optimize process parameters such as blank holder force (BHF), die clearance, and blank width to minimize springback in the workpiece. Using optimal process parameters will enhance the efficiency of die compensation processes. The study uses the Finite Element Method (FEM) simulation to predict forming behavior. The case study, Reinforcement-CTR PLR, is made from AHSS grade JSC980Y with a thickness of 1 mm. Four material model combinations were evaluated against actual experiment results to select the most accurate springback prediction model. A full factorial design was used for experiments with varied process parameters. The optimization process used regression and various Artificial Neural Networks (ANNs). From the result, a Deep Neural Network (DNN) with two hidden layers performed with the highest accuracy compared to the other models. The optimal process parameters were identified as 27.62 tons BHF, 1 mm die clearance, and a 290 mm blank width. These optimal results achieved 98.05% of the part area within a displacement tolerance of −1 to 1 mm, closely matching FEM-based validation. Full article
Show Figures

Figure 1

23 pages, 11820 KiB  
Article
High-Speed Nanoindentation and Local Residual Stress Analysis for Cut Edge Damage in Complex Phase Steels for Automotive Applications
by Laia Ortiz-Membrado, Sergi Parareda, Daniel Casellas, Emilio Jiménez-Piqué and Antonio Mateo
Metals 2025, 15(6), 651; https://doi.org/10.3390/met15060651 - 11 Jun 2025
Viewed by 1171
Abstract
Advanced high-strength steels (AHSSs) are used as lightweight solutions for vehicles, mainly focusing on the Body-in-White. However, the implementation of such steels for chassis parts requires a profound knowledge of the key design parameters for these components, particularly those concerning fatigue performance. Manufacturing [...] Read more.
Advanced high-strength steels (AHSSs) are used as lightweight solutions for vehicles, mainly focusing on the Body-in-White. However, the implementation of such steels for chassis parts requires a profound knowledge of the key design parameters for these components, particularly those concerning fatigue performance. Manufacturing of chassis parts include mechanical cutting operations. Therefore, the deformation and damage induced at the cut edge may affect the fatigue resistance of the parts in service. To characterize and study this critical area, damage and micromechanical properties have been evaluated at the cut edge for three different AHSS grades, CP800, CP980, and DP600, analyzing the impact of cutting parameters and post-processing treatments, such as sandblasting. Large high-speed nanoindentation maps of 400 × 200 µm2 have been carried out along the cut edge in the three different target zones: burnish, fracture, and burr. In the hardness maps, the deformation lines and the gradient of hardness with increasing distance from the cut edge are perfectly observed. Residual stresses at the target zones of the cut edges were measured using the FIB-DIC method for CP980 to complement the micromechanical study in these critical areas. The results found show that reduced cutting clearance leads to larger hardened zones and favorable compressive stress distributions, correlating with improved fatigue resistance. Hardened zones extending up to 100 µm from the cut edge and compressive residual stresses exceeding −300 MPa were observed at low clearance. These findings are consistent with numerical simulations and previous fatigue tests, highlighting the potential of combining high-speed nanoindentation and local stress analysis for optimizing shear cutting processes in AHSS components. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behavior of High-Strength Steel)
Show Figures

Graphical abstract

17 pages, 3854 KiB  
Article
Effect of Aluminum Content on Solidification Process and Microsegregation of δ-TRIP Steel
by Rudong Wang, Yanhui Sun and Heng Cui
Metals 2025, 15(6), 587; https://doi.org/10.3390/met15060587 - 25 May 2025
Viewed by 446
Abstract
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the [...] Read more.
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the product. In this study, thermodynamic calculations and microsegregation model analysis were employed to investigate the effects of Al addition on the solidification path, peritectic reaction range, equilibrium partition coefficients, and microsegregation behavior of δ-TRIP steel. The results show that with an increase in the Al content, the carbon content range in which δ ferrite is retained without complete transformation during the solid-state phase transition becomes broader. Simultaneously, the carbon concentration range of the peritectic zone expands. The segregation of the C, Si, Mn, P, and S elements increases with increasing Al content, whereas the segregation of Al decreases as the Al content increases. Under non-equilibrium solidification conditions, unlike equilibrium solidification, the temperature difference between the solid and liquid phases initially increases, then decreases, and subsequently levels off with further Al addition. This study provides information for the composition design and production process optimization of δ-TRIP steel, and the research results can provide a reference for similar high-aluminum, low-density steels. Full article
(This article belongs to the Special Issue Advanced High-Performance Steels: From Fundamental to Applications)
Show Figures

Figure 1

15 pages, 7767 KiB  
Article
Effect of Mo Addition on the Susceptibility of Advanced High Strength Steels to Liquid Metal Embrittlement
by Fateme Abdiyan, Joseph R. McDermid, Fernando Okigami, Bita Pourbahari, Andrew Macwan, Mirnaly Saenz de Miera, Brian Langelier, Gabriel A. Arcuri and Hatem S. Zurob
Materials 2025, 18(6), 1291; https://doi.org/10.3390/ma18061291 - 14 Mar 2025
Viewed by 659
Abstract
Liquid metal embrittlement (LME) in Zn-coated advanced high-strength steels (AHSSs) is an increasing concern, particularly in automotive assembly, where it can cause early failure and reduce ductility during resistance spot welding (RSW). This study explores the impact of adding 0.2 wt% Mo on [...] Read more.
Liquid metal embrittlement (LME) in Zn-coated advanced high-strength steels (AHSSs) is an increasing concern, particularly in automotive assembly, where it can cause early failure and reduce ductility during resistance spot welding (RSW). This study explores the impact of adding 0.2 wt% Mo on the LME susceptibility of 0.2C-2Mn-1.5Si AHSS through hot tensile testing, RSW, and advanced microstructural analyses, including atom probe tomography (APT) and transmission electron microscopy (TEM). The results suggest that Mo enhances resistance to LME, as evidenced by the increased tensile stroke from 2 mm in the case of the 0 Mo alloy and to 2.75 mm in the case of the 0.2 Mo sample. Also, the average crack length in the shoulder of the welded samples decreased from 109 ± 7 μm to 28 ± 3 μm by adding 0.2 wt% Mo to the base alloy. APT analysis revealed that, in the presence of Mo, there is increased boron (B) segregation at austenite grain boundaries, improving cohesion, while TEM suggested more diffusion of Zn into the substrate, facilitating the formation of Zn-ferrite. These findings highlight Mo’s potential to reduce LME susceptibility of AHSS for automotive applications. Full article
Show Figures

Figure 1

22 pages, 19071 KiB  
Article
Assessment of Rate-Dependency and Adiabatic Heating on the Essential Work of Fracture of Press-Hardening Steels
by Simon Jonsson, David Frómeta, Laura Grifé, Fredrik Larsson and Jörgen Kajberg
Metals 2025, 15(3), 316; https://doi.org/10.3390/met15030316 - 13 Mar 2025
Cited by 1 | Viewed by 749
Abstract
The automotive industry is currently in a paradigm shift transferring the fleet over from internal combustion vehicles to battery electric vehicles (BEV). This introduces new challenges when designing the body-in-white (BIW) due to the sensitive and energy-dense battery that needs to be protected [...] Read more.
The automotive industry is currently in a paradigm shift transferring the fleet over from internal combustion vehicles to battery electric vehicles (BEV). This introduces new challenges when designing the body-in-white (BIW) due to the sensitive and energy-dense battery that needs to be protected in a crash scenario. Press-hardening steels (PHS) have emerged as an excellent choice when designing crash safety parts due to their ability to be manufactured to complex parts with ultra-high strength. It is, however, crucial to evaluate the crash performance of the selected materials before producing parts. Component testing is cumbersome and expensive, often geometry dependent, and it is difficult to separate the bulk material behaviour from other influences such as spot welds. Fracture toughness measured using the essential work of fracture method is a material property which has shown to be able to rationalise crash resistance of advanced high-strength steel (AHSS) grades and is thereby an interesting parameter in classifying steel grades for automotive applications. However, most of the published studies have been performed at quasi-static loading rates, which are vastly different from the strain rates involved in a crash. These higher strain rates may also lead to adiabatic self-heating which might influence the fracture toughness of the material. In this work, two PHS grades, high strength and very high strength, intended for automotive applications were investigated at lower and higher strain rates to determine the rate-dependence on the conventional tensile properties as well as the fracture toughness. Both PHS grades showed a small increase in conventional mechanical properties with increasing strain rate, while only the high-strength PHS grade showed a significant increase in fracture toughness with increasing loading rate. The adiabatic heating in the fracture process zone was estimated with a high-speed thermal camera showing a significant temperature increase up to 300 °C. Full article
Show Figures

Figure 1

19 pages, 2865 KiB  
Article
A Study of the Corrosion Behavior of AHSS Complex-Phase CP 780 Employing an Electrochemical Noise Technique Analyzed by Different Methods
by Maria Lara-Banda, Facundo Almeraya-Calderón, Jesús Manuel Jáquez-Muñoz, Demetrio Nieves-Mendoza, Miguel Angel Baltazar-Zamora, Javier Olguín-Coca, Francisco Estupiñan-Lopez, Jose Cabral Miramontes, Griselda Santiago-Hurtado and Citlalli Gaona-Tiburcio
Metals 2025, 15(1), 59; https://doi.org/10.3390/met15010059 - 11 Jan 2025
Viewed by 1019
Abstract
The automotive industry employs structural steels with E-coats to reduce weight and increase the corrosion resistance of chassis, reducing CO2 emissions. Due to their mechanical properties, part of the chassis is a composite of advanced high-strength steels (AHSS). AHSSs are coated by [...] Read more.
The automotive industry employs structural steels with E-coats to reduce weight and increase the corrosion resistance of chassis, reducing CO2 emissions. Due to their mechanical properties, part of the chassis is a composite of advanced high-strength steels (AHSS). AHSSs are coated by conversion methods such as phosphate to increase epoxy coating adherence and corrosion resistance. The main point of this research is to characterize an AHSS complex-phase (CP) 780 in blank, with a phosphate coating and an E-coat organic coating using electrochemical noise, employing time-domain, frequency-domain, time–frequency-domain, and chaotic system methods to determine the type and corrosion kinetics of each system. The electrochemical noise technique was made with a conventional three-electrode cell, using a saturated calomel as a reference electrode. Data were recorded at 1024 s, at 1 data per second in a 3.5 wt. % NaCl electrolyte, according to ASTM G199-09. The results show how AHSS CP 780 presented uniform corrosion, similarly to the phosphate sample; however, the E-coat presented a trend of a localized process when analyzed by Wavelets transform. On the other hand, corrosion resistance increased for the E-coat sample, with values of 2.58 × 106 Ω·cm2. According to the results of the research, all the samples are susceptible to present localized corrosion. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Graphical abstract

19 pages, 6579 KiB  
Article
Flange Buckling Mechanism in Incremental Shape Rolling of an Automotive-Type Variable Width Component
by Abdelrahman Essa, Buddhika Abeyrathna, Bernard Rolfe and Matthias Weiss
J. Manuf. Mater. Process. 2024, 8(6), 290; https://doi.org/10.3390/jmmp8060290 - 15 Dec 2024
Viewed by 1102
Abstract
Automotive structural components from Advanced High-Strength Steels (AHSS) can be manufactured with Flexible Roll Forming (FRF). The application of FRF in the automotive industry is limited due to flange wrinkling defects that increase with material strength. The new Incremental Shape Rolling process (ISR) [...] Read more.
Automotive structural components from Advanced High-Strength Steels (AHSS) can be manufactured with Flexible Roll Forming (FRF). The application of FRF in the automotive industry is limited due to flange wrinkling defects that increase with material strength. The new Incremental Shape Rolling process (ISR) has been shown to reduce wrinkling severity compared to FRF and therefore presents a promising alternative for the manufacture of high-strength automotive components. The current work analyzes for the first time the mechanisms that lead to wrinkling reduction in ISR based on the critical stress conditions that develop in the flange. For this, finite element process models are validated with experimental forming trials and used to investigate the material deformation and the forming stresses that occur in FRF and ISR when forming a variable-width automotive component. The results show that in ISR, the undeformed flange height decreases with increasing forming; this increases the critical buckling and wrinkling stresses with each forming pass and prevents the development of wrinkles towards the end of the forming process. In contrast, in FRF, the critical buckling or wrinkling stress is constant, while the longitudinal compressive stress in the flange increases with the number of forming passes and exceeds the critical stress. This leads to the development of severe wrinkles in the flange. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

15 pages, 10459 KiB  
Article
Identification of Structural Constituents in Advanced Multiphase High-Strength Steels Using Electron Back-Scattered Diffraction
by Aleksandra Kozłowska, Krzysztof Radwański and Adam Grajcar
Symmetry 2024, 16(12), 1630; https://doi.org/10.3390/sym16121630 - 9 Dec 2024
Viewed by 1067
Abstract
This study addresses the characterization of the particular microstructural constituents of multiphase transformation-induced plasticity (TRIP)-aided steels belonging to the first and third generations of Advanced High Strength Steels (AHSS) to explore the possibilities of the EBSD method. Complex microstructures composed of ferrite, bainite, [...] Read more.
This study addresses the characterization of the particular microstructural constituents of multiphase transformation-induced plasticity (TRIP)-aided steels belonging to the first and third generations of Advanced High Strength Steels (AHSS) to explore the possibilities of the EBSD method. Complex microstructures composed of ferrite, bainite, retained austenite and martensite were qualitatively and quantitatively assessed. Microstructural constituents with the same crystal structure were distinguished using characteristic EBSD parameters like confidence index (CI), image quality (IQ), kernel average misorientation (KAM) and specific crystallographic orientation relationships. A detailed linear analysis of the IQ parameter and misorientation angles was also performed. These tools are very helpful in linking different symmetric or asymmetric features of metallic alloys with a type of their structure and morphology details. Two types of samples were investigated: thermomechanically processed and subjected to 10% tensile strain to study the microstructural changes caused by plastic deformation. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2024)
Show Figures

Figure 1

14 pages, 15193 KiB  
Article
Comparative Study on the Liquid Metal Embrittlement Susceptibility of the High-Si Advanced High-Strength Steel with EG and GA Zn Coatings
by Jingyi Gu, Jiayi Zhou, Rongxun Hu, Yu Sun, Ming Lei and Yulai Gao
Metals 2024, 14(11), 1221; https://doi.org/10.3390/met14111221 - 26 Oct 2024
Cited by 1 | Viewed by 1184
Abstract
The Zn-coated high-Si advanced high-strength steel (AHSS) tends to suffer Zn-assisted liquid metal embrittlement (LME) during the resistance spot welding (RSW) process. In this study, the LME behaviors of electrogalvanized (EG) and galvannealed (GA) high-Si steels were comparatively investigated. The maximum lengths of [...] Read more.
The Zn-coated high-Si advanced high-strength steel (AHSS) tends to suffer Zn-assisted liquid metal embrittlement (LME) during the resistance spot welding (RSW) process. In this study, the LME behaviors of electrogalvanized (EG) and galvannealed (GA) high-Si steels were comparatively investigated. The maximum lengths of the LME cracks at the shoulder and center of the spot weld were approximately 366.6 μm and 1486.5 μm, respectively, for the EG yet 137.0 μm and 1533.3 μm, respectively, for the GA high-Si steels. Additionally, all EG and GA welded joints were etched to measure the nugget size. It was found that the increased welding current could aggravate the formation tendency of the LME cracks for both the EG and GA high-Si steels. Furthermore, the statistical results revealed that the electrogalvanized high-Si AHSS exhibited a relatively higher LME susceptibility than the galvannealed high-Si AHSS. It was deemed that the internal oxidation produced during the annealing before the Zn coating was the crucial factor that led to the difference in the LME susceptibilities for the EG and GA high-Si steels. Full article
(This article belongs to the Special Issue Advances in Welding Processes of Metallic Materials)
Show Figures

Figure 1

16 pages, 21816 KiB  
Article
The High-Cycle Tensile–Shear Fatigue Properties and Failure Mechanism of Resistance Spot-Welded Advanced High-Strength Steel with a Zn Coating
by Yu Sun, Jiayi Zhou, Rongxun Hu, Hua Pan, Kai Ding, Ming Lei and Yulai Gao
Materials 2024, 17(18), 4463; https://doi.org/10.3390/ma17184463 - 11 Sep 2024
Cited by 3 | Viewed by 1491
Abstract
Advanced high-strength steels (AHSSs) with Zn coatings are commonly joined by the resistance spot welding (RSW) technique. However, Zn coatings could possibly cause the formation of liquid metal embrittlement (LME) cracks during the RSW process. The role of a Zn coating in the [...] Read more.
Advanced high-strength steels (AHSSs) with Zn coatings are commonly joined by the resistance spot welding (RSW) technique. However, Zn coatings could possibly cause the formation of liquid metal embrittlement (LME) cracks during the RSW process. The role of a Zn coating in the tensile–shear fatigue properties of a welding joint has not been systematically explored. In this study, the fatigue properties of tensile–shear RSW joints for bare and Zn-coated advanced high-strength steel (AHSS) specimens were comparatively studied. In particular, more severe LME cracks were triggered by employing a tilted welding electrode because much more stress was caused in the joint. LME cracks had clearly occurred in the Zn-coated steel RSW joints, as observed via optical microscopy. On the contrary, no LME cracks could be found in the RSW joints prepared with the bare steel sheets. The fatigue test results showed that the tensile–shear fatigue properties remained nearly unchanged, regardless of whether bare or Zn-coated steel was used for the RSW joints. Furthermore, Zn mapping adjacent to the crack initiation source was obtained by an electron probe micro-analyzer (EPMA), and it showed no segregation of the Zn element. Thus, the failure of the RSW joints with the Zn coating had not initiated from the LME cracks. It was concluded that the fatigue cracks were initiated by the stress concentration in the notch position between the two bonded steel sheets. Full article
Show Figures

Figure 1

18 pages, 15418 KiB  
Article
Docol 1300M Micro-Jet-Cooled Weld in Microstructural and Mechanical Approaches concerning Applications at Cyclic Loading
by Tomasz Węgrzyn, Klaudiusz Gołombek, Bożena Szczucka-Lasota, Tadeusz Szymczak, Bogusław Łazarz and Krzysztof Lukaszkowicz
Materials 2024, 17(12), 2934; https://doi.org/10.3390/ma17122934 - 15 Jun 2024
Cited by 2 | Viewed by 929
Abstract
The application of advanced high-strength steel grades (AHSS) in different kinds of industry is connected to more than their attractive mechanical properties. The present paper focuses on improving the welding Docol 1300M steel to reach an acceptable microstructure and mechanical parameters. It was [...] Read more.
The application of advanced high-strength steel grades (AHSS) in different kinds of industry is connected to more than their attractive mechanical properties. The present paper focuses on improving the welding Docol 1300M steel to reach an acceptable microstructure and mechanical parameters. It was decided to manufacture joints with different welding parameters using different filler materials. The electrode wires were varied to increase the carbon content in the weld, and nitrogen was added to the argon shielding mixture to obtain non-metallic inclusions that strengthen the fusion zone. Specimens of joints welded with the gas metal arc welding (GMAW) process for non-destructive and destructive tests were examined. Tensile and bending tests as well as microscopic inspections using a light (LM) and scanning electron microscope (SEM) were also conducted. The results from the fatigue test confirmed the validity of the proposed welding process for the Docol 1300M joint. The collected data enabled the following conclusion: The article’s novelty is represented by the use of shielding gas mixtures containing argon and nitrogen in the GMAW welding process of AHSS steel to create titanium non-metallic inclusions, which will translate into better performance properties of the entire joint. Full article
(This article belongs to the Special Issue Structures and Weldability of Metallic Materials)
Show Figures

Figure 1

16 pages, 27615 KiB  
Article
Crystal Plasticity Finite Element Modeling of the Influences of Ultrafine-Grained Austenite on the Mechanical Response of a Medium-Mn Steel
by Pengfei Shen, Yang Liu and Xiang Zhang
Crystals 2024, 14(5), 405; https://doi.org/10.3390/cryst14050405 - 26 Apr 2024
Cited by 2 | Viewed by 2047
Abstract
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase [...] Read more.
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase transformation from the parent martensite phase during intercritical annealing. While, in general, UFG is considered a strengthening mechanism, the impact of UFG austenites in medium-Mn steel has not been fully studied. In this manuscript, we advance our previous work on crystal plasticity simulation based on the Taylor model to consider fully resolved high-fidelity microstructures and systematically study the influence of the UFG austenites. The original microstructure with UFG is reconstructed from a set of serial electron backscatter diffraction (EBSD) scans, where the exact grain morphology, orientation, and phase composition are preserved. This microstructure was further analyzed to identify the UFG austenites and recover them to their parent martensite before the intercritical annealing. These two high-fidelity microstructures are used for a comparative study using dislocation density-based crystal plasticity finite modeling to understand the impact of UFG austenites on both the local and overall mechanical responses. Full article
Show Figures

Figure 1

Back to TopTop