materials-logo

Journal Browser

Journal Browser

Research on Microstructure Evolution and Properties of High-Strength Steel

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 8838

Special Issue Editors


E-Mail Website
Guest Editor
Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
Interests: ultrahigh-strength steels with good ductility; material processing/manufacturing; materials characterization; mechanical properties; strengthening and toughening; fracture mechanics

E-Mail Website
Guest Editor
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
Interests: high-performance metal material forming and manufacturing; additive manufacturing; welding and service (friction, wear, corrosion) behavior research

Special Issue Information

Dear Colleagues,

High/ultrahigh-strength steels are advanced materials with exceptional strength and toughness. They are widely used in various industries, such as automotive, construction, and aerospace, due to their ability to withstand high stress and weight. Reasonable microstructure design and its evolution features are crucial for the achievement of excellent mechanical properties. Chemical composition, preparation technology (i.e., casting, additive manufacturing), and processing (i.e., TMCP, severe plastic deformation, heat treatment) are important factors that significantly affect the microstructure characteristics of materials. Thus, integrated research on the composition, processing, microstructure, and properties of materials will provide a better understanding of the correspondence between microstructures and mechanical properties, to promote the development and application of high/ultrahigh-strength steels. The aim of this Special Issue is to publish original research articles, communications and reviews dealing with processing techniques, microstructure evolution, fracture behavior, and the strengthening and toughening mechanisms of high-strength steels. Contributions encompassing experiments, simulations, and modelling related to the above subject are all encouraged.

Dr. Guosheng Sun
Dr. Zhenguang Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • high-strength steel
  • phase transformation
  • microstructure
  • mechanical property
  • plastic deformation
  • fracture behavior
  • strengthening and toughening mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 7767 KiB  
Article
Effect of Mo Addition on the Susceptibility of Advanced High Strength Steels to Liquid Metal Embrittlement
by Fateme Abdiyan, Joseph R. McDermid, Fernando Okigami, Bita Pourbahari, Andrew Macwan, Mirnaly Saenz de Miera, Brian Langelier, Gabriel A. Arcuri and Hatem S. Zurob
Materials 2025, 18(6), 1291; https://doi.org/10.3390/ma18061291 - 14 Mar 2025
Viewed by 480
Abstract
Liquid metal embrittlement (LME) in Zn-coated advanced high-strength steels (AHSSs) is an increasing concern, particularly in automotive assembly, where it can cause early failure and reduce ductility during resistance spot welding (RSW). This study explores the impact of adding 0.2 wt% Mo on [...] Read more.
Liquid metal embrittlement (LME) in Zn-coated advanced high-strength steels (AHSSs) is an increasing concern, particularly in automotive assembly, where it can cause early failure and reduce ductility during resistance spot welding (RSW). This study explores the impact of adding 0.2 wt% Mo on the LME susceptibility of 0.2C-2Mn-1.5Si AHSS through hot tensile testing, RSW, and advanced microstructural analyses, including atom probe tomography (APT) and transmission electron microscopy (TEM). The results suggest that Mo enhances resistance to LME, as evidenced by the increased tensile stroke from 2 mm in the case of the 0 Mo alloy and to 2.75 mm in the case of the 0.2 Mo sample. Also, the average crack length in the shoulder of the welded samples decreased from 109 ± 7 μm to 28 ± 3 μm by adding 0.2 wt% Mo to the base alloy. APT analysis revealed that, in the presence of Mo, there is increased boron (B) segregation at austenite grain boundaries, improving cohesion, while TEM suggested more diffusion of Zn into the substrate, facilitating the formation of Zn-ferrite. These findings highlight Mo’s potential to reduce LME susceptibility of AHSS for automotive applications. Full article
Show Figures

Figure 1

18 pages, 13171 KiB  
Article
Effect of Heat Input on Microstructural Evolution and Impact Toughness of the Simulated CGHAZ for a Novel Q690 MPa V-N Medium and Heavy Plate
by Yang Liu, Heng Ma, Zhaoyu Wang, Xuehui Chen, Xiaoxin Huo, Hongyan Wu and Linxiu Du
Materials 2025, 18(5), 1148; https://doi.org/10.3390/ma18051148 - 4 Mar 2025
Viewed by 441
Abstract
In order to find the optimal heat input for simulating the welding of the coarse-grained heat-affected zone (CGHAZ) of a novel Q690 MPa V-N microalloyed medium and heavy plate, the study investigated the precipitation of V (C, N), microstructural changes, and impact toughness [...] Read more.
In order to find the optimal heat input for simulating the welding of the coarse-grained heat-affected zone (CGHAZ) of a novel Q690 MPa V-N microalloyed medium and heavy plate, the study investigated the precipitation of V (C, N), microstructural changes, and impact toughness under five different heat inputs (E). The results show that in the CGHAZ, as the heat input increases, the dominant microstructure changes from intragranular acicular ferrite (IGAF) and lath bainitic ferrite (LBF) to polygonal ferrite (PF) and a small amount of IGAF. At the same time, the area fraction of the brittle phase martensite/austenite (M/A) constituents increased from 4.96% to 7.95% as heat input increased, and the microhardness difference between the M/A constituents and the matrix significantly increased. In addition, with the E increases, the fraction of high-angle grain boundaries (HAGBs), which can hinder crack propagation, increases from 59.2% to 62.2% and then decreases from 62.2% to 49.3%. Moreover, the impact toughness of the simulated CGHAZ of the Q690 MPa V-N microalloyed medium and heavy plate first increases from 62 J to 100 J and then decrease to 20 J. Full article
Show Figures

Figure 1

15 pages, 32725 KiB  
Article
Microstructure Refinement via Nucleation of Intragranular Acicular Ferrite Stimulated by Ti-Containing Core–Shell Structured Particles in Low-Carbon Steel
by Zhu Yan, Chao Wang, Hua Duan, Junjie Hao and Guo Yuan
Materials 2024, 17(18), 4644; https://doi.org/10.3390/ma17184644 - 21 Sep 2024
Viewed by 1293
Abstract
This study investigated the microstructure, mechanical properties, and nucleation mechanism of acicular ferrite (AF) present in hot-rolled Ti deoxidized steel. In our experiments, the impact toughness of Ti deoxidized steel is significantly increased to 144 J at −20 °C, while those Mn and [...] Read more.
This study investigated the microstructure, mechanical properties, and nucleation mechanism of acicular ferrite (AF) present in hot-rolled Ti deoxidized steel. In our experiments, the impact toughness of Ti deoxidized steel is significantly increased to 144 J at −20 °C, while those Mn and Al deoxidized steels are only 9 J and 18 J, respectively. Interlocked AF is the primary microstructure of Ti deoxidized steel. The second-phase particles of the core–shell-type structure, in which Ti2O3 is the nucleus and TiO is the outermost shell, act as effective nucleating agents to stimulate AF nucleation. The low lattice disregistry between TiO and AF is the main factor contributing to the production of AF. It is also revealed that Ti2O3 and MnS fulfill the particular orientation relationship, contributing to the formation of an Mn-depleted zone (MDZ) adjacent to MnS, proposed to be one of the possible mechanisms for promoting AF nucleation. Full article
Show Figures

Figure 1

16 pages, 5838 KiB  
Article
Suppress Austenite Grain Coarsening by Nb Alloying in High–Temperature–Pseudo–Carburized Bearing Steel
by Xueliang An, Wenquan Cao, Xiaodan Zhang and Jinku Yu
Materials 2024, 17(12), 2962; https://doi.org/10.3390/ma17122962 - 17 Jun 2024
Cited by 1 | Viewed by 817
Abstract
The effect of Nb alloying on the suppression of austenite grain coarsening behavior during pseudo–carburizing is investigated in high–temperature–carburized SAE4320 bearing steel. To explore the role of the Nb element in the pseudo–carburizing process, the morphology, composition, size, and distribution of NbC precipitates [...] Read more.
The effect of Nb alloying on the suppression of austenite grain coarsening behavior during pseudo–carburizing is investigated in high–temperature–carburized SAE4320 bearing steel. To explore the role of the Nb element in the pseudo–carburizing process, the morphology, composition, size, and distribution of NbC precipitates were analyzed. The results show that the fine austenite grain observed in Nb micro–alloyed steel is caused by the pinning effect of NbC precipitates, which hinders the coarsening of austenite grains and changes the growth dynamics of austenite grains. After the SAE4320 carburized bearing steel with the addition of 0.45 wt.% Nb element is kept at 1150 °C for 4 h, the PAG size is still below 20 μm, which indicates the Nb element has obvious advantages in limiting PAG growth at high temperatures and shows great potential for the development of high–temperature carburized bearing steel. Full article
Show Figures

Figure 1

15 pages, 9861 KiB  
Article
Improvement in Grain Size Distribution Uniformity for Nuclear-Grade Austenitic Stainless Steel through Thermomechanical Treatment
by Yong Wang, Weiwei Xue, Zongxu Pang, Zichen Zhao, Zhuohua Liu, Chenyuan Liu, Fei Gao and Weijuan Li
Materials 2024, 17(10), 2313; https://doi.org/10.3390/ma17102313 - 14 May 2024
Viewed by 1089
Abstract
In this work, thermomechanical treatment (single-pass rolling at 800 °C and solution treatment) was applied to nuclear-grade hot-rolled austenitic stainless steel to eliminate the mixed grain induced by the uneven hot-rolled microstructure. By employing high-temperature laser scanning confocal microscopy, microstructure evolution during solution [...] Read more.
In this work, thermomechanical treatment (single-pass rolling at 800 °C and solution treatment) was applied to nuclear-grade hot-rolled austenitic stainless steel to eliminate the mixed grain induced by the uneven hot-rolled microstructure. By employing high-temperature laser scanning confocal microscopy, microstructure evolution during solution treatment was observed in situ, and the effect of single-pass rolling reduction on it was investigated. In uneven hot-rolled microstructure, the millimeter-grade elongated grains (MEGs) possessed an extremely large size and a high Schmid factor for slip compared to the fine grains, which led to greater plastic deformation and increased dislocation density and deformation energy storage during single-pass rolling. During subsequent solution treatment, there were fewer nucleation sites for the new grain, and the grain boundary (GB) was the main nucleation site in MEGs at a lower rolling reduction. In contrast, at a higher reduction, increased uniformly distributed rolling deformation and more nucleation sites were developed in MEGs. As the reduction increased, the number of in-grain nucleation sites gradually exceeded that of GB nucleation sites, and in-grain nucleation preferentially occurred. This was beneficial for promoting the refinement of new recrystallized grains and a reduction in the size difference of new grains during recrystallization. The single-pass rolling reduction of 15–20% can effectively increase the nucleation sites and improve the uniformity of rolling deformation distribution in the MEGs, promote in-grain nucleation, and finally refine the abnormally coarse elongated grain, and eliminate the mixed-grain structure after solution treatment. Full article
Show Figures

Figure 1

13 pages, 10050 KiB  
Article
Strengthening and Embrittling Mechanism of Super 304H Steel during Long-Term Aging at 650 °C
by Yue Wu, Fufangzhuo Chai, Junjian Liu, Jiaqing Wang, Yong Li and Chengchao Du
Materials 2024, 17(3), 740; https://doi.org/10.3390/ma17030740 - 3 Feb 2024
Cited by 3 | Viewed by 1762
Abstract
Super 304H has been a crucial material for ultra-supercritical boilers. However, the relationship between microstructure evolution, strengthening mechanism, and embrittling behavior during long-term aging was lacking investigation. This investigation aimed to reveal the strengthening and embrittling mechanism from precipitates in Super 304H. The [...] Read more.
Super 304H has been a crucial material for ultra-supercritical boilers. However, the relationship between microstructure evolution, strengthening mechanism, and embrittling behavior during long-term aging was lacking investigation. This investigation aimed to reveal the strengthening and embrittling mechanism from precipitates in Super 304H. The results showed that the hardness increment came from the grain boundary’s M23C6 (GB’s M23C6) and intragranular nano Cu-rich particles. After being aged for 5000 h, the GB’s M23C6 and nano Cu-rich particles provided a hardness increment of approximately 10 HV and 30 HV, respectively. The impact toughness gradually decreased from 213 J/cm2 to 161 J/cm2 with the extending aging time. For the aged Super 304H, the GB’s M23C6 provided a higher cracking source. In addition, the nano Cu-rich particle restricted the twin-induced plastic deformation of austenitic grain and depressed the absorbed energy from austenitic grain deformation. Full article
Show Figures

Figure 1

16 pages, 7754 KiB  
Article
Achieving 2.2 GPa Ultra-High Strength in Low-Alloy Steel Using a Direct Quenching and Partitioning Process
by Gang Niu, Donghao Jin, Yong Wang, Haoxiu Chen, Na Gong and Huibin Wu
Materials 2023, 16(24), 7533; https://doi.org/10.3390/ma16247533 - 6 Dec 2023
Cited by 1 | Viewed by 2145
Abstract
Advanced high-strength steels (AHSS) have a wide range of applications in equipment safety and lightweight design, and enhancing the strength of AHSS to the ultra-high level of 2 GPa is currently a key focus. In this study, a new process of thermo-mechanical control [...] Read more.
Advanced high-strength steels (AHSS) have a wide range of applications in equipment safety and lightweight design, and enhancing the strength of AHSS to the ultra-high level of 2 GPa is currently a key focus. In this study, a new process of thermo-mechanical control process followed by direct quenching and partitioning (TMCP-DQP) was developed based on Fe-0.4C-1Mn-0.6Si (wt.%) low-alloy steel, and the effects of microstructure evolution on mechanical properties under TMCP-DQP process and conventional hot rolled quenched and tempered process (HR-QT) were comparatively studied. The results show that the TMCP-DQP process not only shortened the processing steps but also achieved outstanding comprehensive mechanical properties. The TMCP-DQP steel exhibited a tensile strength of 2.23 GPa, accompanied by 11.9% elongation and a Brinell hardness of 624 HBW, with an impact toughness of 28.5 J at −20 °C. In contrast, the HR-QT steel exhibited tensile strengths ranging from 2.16 GPa to 1.7 GPa and elongations between 5.2% and 12.2%. The microstructure of TMCP-DQP steel primarily consisted of lath martensite, containing thin-film retained austenite (RA), nanoscale rod-shaped carbides, and a minor number of nanoscale twins. The volume fraction of RA reached 7.7%, with an average carbon content of 7.1 at.% measured by three-dimensional atom probe tomography (3DAP). Compared with the HR-QT process, the TMCP-DQP process resulted in a finer microstructure, with a prior austenite grain (PAG) size of 11.91 μm, forming packets and blocks with widths of 5.12 μm and 1.63 μm. The TMCP-DQP process achieved the ultra-high strength of low-alloy steel through the synergistic effects of grain refinement, dislocation strengthening, and precipitation strengthening. The dynamic partitioning stage stabilized the RA through carbon enrichment, while the relaxation stage reduced a small portion of the dislocations generated by thermal deformation, and the self-tempering stage eliminated internal stresses, all guaranteeing considerable ductility and toughness. The TMCP-DQP process may offer a means for industries to streamline their manufacturing processes and provide a technological reference for producing 2.2 GPa grade AHSS. Full article
Show Figures

Figure 1

Back to TopTop