Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = adamantane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6900 KiB  
Article
Tuning the Energy Levels of Adamantane by Boron Substitution
by Aminu H. Yusuf, Vladimir B. Golovko and Sarah L. Masters
Molecules 2025, 30(9), 1976; https://doi.org/10.3390/molecules30091976 - 29 Apr 2025
Viewed by 755
Abstract
Adamantane is known to have two different carbon environments, the C1-type (or bridgehead) and C2-type (or methylene bridge), serving as a foundation to explore the effects of boron substitution at these sites. Using DFT with B3LYP/6-31G(d), the structural, electronic, and optical properties of [...] Read more.
Adamantane is known to have two different carbon environments, the C1-type (or bridgehead) and C2-type (or methylene bridge), serving as a foundation to explore the effects of boron substitution at these sites. Using DFT with B3LYP/6-31G(d), the structural, electronic, and optical properties of 37 boron-substituted isomers were investigated. The adamantane structure has rigid Td symmetry with an average rC-C of 153.7 pm, which progressively transforms to C3v and C1 symmetry in heavily substituted isomers. Analysis of the neutral and ionic species reveals a critical transition from electron-donating to electron-accepting behaviour at tri-boron substitution, confirmed by both DFT and coupled cluster calculations (CCSD(T)/CC-pVDZ). C1 substitution narrows the HOMO–LUMO gap significantly, achieving a 56% reduction compared to 44.5% for C2 substitution in tetra-bora derivatives compared to adamantane. Optical properties [CAM-B3LYP/6-311G(d,p)] show systematic red shifting with increasing boron substitution, with absorption maxima moving from 146 nm in pristine adamantane to 423 nm (C1) and 277 nm (C2) in heavily boron-substituted derivatives (tetra-bora-adamantane). While C1 substitution leads to symmetry-forbidden transitions, C2 substitution maintains allowed transitions, offering more consistent optical behaviour. These findings provide important insight for the design of adamantane-based materials with tailored electronic and optical properties. Full article
Show Figures

Figure 1

20 pages, 6664 KiB  
Article
Constructing Pt/Hierarchical HY Bifunctional Catalysts for Selective Hydroisomerization of Phenanthrene to Alkyl-Adamantanes
by Nan Jiang, Xiaopo Niu, Danni Liu, Kaige Zhang, Zhen Guo, Yue Qin, Wenli Zhao, Xiangwen Zhang and Qingfa Wang
Catalysts 2025, 15(5), 413; https://doi.org/10.3390/catal15050413 - 23 Apr 2025
Cited by 1 | Viewed by 523
Abstract
Designing bifunctional catalysts for efficient hydroisomerization of phenanthrene to alkyl-adamantane is a great challenge for producing high-density fuels. Herein, a bifunctional Pt catalyst was fabricated by developing hierarchical H-MSY-T zeolites with an NOA-co strategy. The influence of different mesopore template agents on the [...] Read more.
Designing bifunctional catalysts for efficient hydroisomerization of phenanthrene to alkyl-adamantane is a great challenge for producing high-density fuels. Herein, a bifunctional Pt catalyst was fabricated by developing hierarchical H-MSY-T zeolites with an NOA-co strategy. The influence of different mesopore template agents on the hierarchical structure of H-MSY-T zeolite was investigated. Effective regulation of pore structure and acid distribution of zeolites was achieved by adjusting the templating agents. The block copolymer P123 promoted the formation of mesoporous structures via self-assembly with a large mesopore centered at 8 nm. Large mesoporous structure and suitable distribution of Bronsted acid boosted the hydroisomerization of phenanthrene. The highest alkyl-adamantane yield of 45.9 wt% was achieved on the Pt/MSY-P1 catalyst and a reaction network of hydroisomerization was proposed. This work provides guidance to design highly selective bifunctional catalysts for the one-step hydroconversion of tricyclic aromatic hydrocarbons into high-density fuels. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and Environmental Applications)
Show Figures

Figure 1

19 pages, 3023 KiB  
Article
Anti-Orthopoxvirus Activity of Amantadine and Rimantadine Derivatives—In Vitro Testing and Molecular Modeling
by Ivan A. Moskalev, Ekaterina A. Akishina, Evgenij A. Dikusar, Olga I. Yarovaya, Sophia S. Borisevich, Edward M. Khamitov, Alexey Yu. Fedorov, Sergey G. Arkhipov, Nikolay I. Bormotov, Olga A. Serova, Larisa N. Shishkina, Vladimir. I. Potkin and Nariman F. Salakhutdinov
Chemistry 2025, 7(2), 34; https://doi.org/10.3390/chemistry7020034 - 1 Mar 2025
Viewed by 1178
Abstract
In 2022, the number of mpox cases spiked worldwide, leading to a surge in scientific research on members of the Orthopoxvirus genus and the discovery of new compounds exhibiting anti-orthopoxvirus activity. This work is devoted to the synthesis of compounds containing an adamantane [...] Read more.
In 2022, the number of mpox cases spiked worldwide, leading to a surge in scientific research on members of the Orthopoxvirus genus and the discovery of new compounds exhibiting anti-orthopoxvirus activity. This work is devoted to the synthesis of compounds containing an adamantane fragment and the evaluation of their activity against the vaccinia virus, offering a possible mechanism of the antiviral action of the synthesized agents. Among all the studied adamantane derivatives, three compounds (2, 4, and 12) were found to demonstrate the highest antiviral activity, with the most promising compound 2 (N-(adamantan-1-yl)isonicotinamide) having the lowest toxicity level with a selectivity index (SI) of 115. The pharmacophoric profiles of these compounds are similar to the pharmacophoric profile of tecovirimat, an inhibitor of the membrane viral protein p37. Analysis of the results of molecular modeling suggests that the investigated compounds can inhibit the vaccinia virus by suppressing the phospholipase activity of membrane viral protein p37. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

13 pages, 5044 KiB  
Article
Development and Application of a Fully Automated Chemiluminescence Enzyme Immunoassay for the Detection of Antibodies Against Porcine Circovirus 3 Cap
by Lei Wang, Duan Li, Daoping Zeng, Xiaomin Wang, Yanlin Liu, Guoliang Peng, Zheng Xu and Changxu Song
Viruses 2024, 16(12), 1925; https://doi.org/10.3390/v16121925 - 17 Dec 2024
Viewed by 1219
Abstract
Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine. PCV3 capsid protein (Cap) is an [...] Read more.
Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine. PCV3 capsid protein (Cap) is an ideal antigen candidate for serodiagnosis. Here, a novel fully automated chemiluminescence enzyme immunoassay (CLEIA) was developed to detect antibodies (Abs) to Cap in porcine serum. Recombinant PCV3 Cap, self-assembled into virus-like particles (VLPs), was produced using baculovirus and coupled to magnetic particles (Cap-MPs) as carriers. Combined with an alkaline phosphatase (AP)–adamantane (AMPPD) system, Cap-Abs can be rapidly measured on a fully automated chemiluminescence analyzer. Under optimal conditions, a cut-off value of 31,508 was determined, with a diagnostic sensitivity of 96.8% and specificity of 97.3%. No cross-reactivity was observed with PCV1 and PCV2 and other common porcine pathogens, and both intra-assay and inter-assay coefficients were less than 5% and 10%, respectively. Prepared Cap-MPs can be stored at 4 °C for more than 6 months. Importantly, this CLEIA had a good agreement of 95.19% with the commercially available kit, demonstrating excellent analytical sensitivity and significantly reduced operating time and labor. A serological survey was then conducted, and showed that PCV3 continues to spread widely in South China. In conclusion, our CLEIA provides time and labor-saving, and a reliable tool for PCV3 epidemiological surveillance. Full article
(This article belongs to the Special Issue Porcine Viruses 2024)
Show Figures

Figure 1

15 pages, 4451 KiB  
Article
Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment
by Kendra Sorroza-Martínez, Ignacio González-Sánchez, Raúl Villamil-Ramos, Marco Cerbón, Jorge Antonio Guerrero-Álvarez, Cristina Coronel-Cruz, Ernesto Rivera and Israel González-Méndez
Pharmaceutics 2024, 16(12), 1509; https://doi.org/10.3390/pharmaceutics16121509 - 23 Nov 2024
Cited by 1 | Viewed by 1275
Abstract
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results [...] Read more.
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane–hydrazone–doxorubicin (Ad-h-Dox) prodrug. Methods: The formation of inclusion complexes (ICs) between the prodrug and all the βCD cavities present on the surface of the PAMAM-βCD dendrimer was followed by 1H-NMR titration and corroborated by 2D NOESY experiments. A full characterization of the supramolecular assembly was performed in the solid state by thermal analysis (DSC/TGA) and scanning electron microscopy (SEM) and in solution by the DOSY NMR technique in D2O. Furthermore, the Dox release profiles from the PAMAM-βCD/Ad-h-Dox assembly at different pH values was studied by comparing the efficiency against a native βCD/Ad-h-Dox IC. Additionally, in vitro cytotoxic activity assays were performed for the nanocarrier alone and the two supramolecular assemblies in different carcinogenic cell lines. Results: The PAMAM-βCD/Ad-h-Dox assembly was adequately characterized, and the cytotoxic activity results demonstrate that the nanocarrier alone and its hydrolysis product are innocuous compared to the PAMAM-βCD/Ad-h-Dox nanocarrier that showed cytotoxicity equivalent to free Dox in the tested cancer cell lines. The in vitro drug release assays for the PAMAM-βCD/Ad-h-Dox system showed an acidic pH-dependent behavior and a prolonged profile of up to more than 72 h. Conclusions: The design of PAMAM-βCD/Ad-h-Dox consists of a new controlled and prolonged Dox release system for potential use in cancer treatment. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Gene and Drug Delivery Applications)
Show Figures

Figure 1

12 pages, 5364 KiB  
Article
Controlled Formation of Silicon-Vacancy Centers in High-Pressure Nanodiamonds Produced from an “Adamantane + Detonation Nanodiamond” Mixture
by Dmitrii G. Pasternak, Rustem H. Bagramov, Alexey M. Romshin, Igor P. Zibrov, Vladimir P. Filonenko and Igor I. Vlasov
Nanomaterials 2024, 14(22), 1843; https://doi.org/10.3390/nano14221843 - 18 Nov 2024
Cited by 1 | Viewed by 1176
Abstract
Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, [...] Read more.
Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, both in the synthesis of nanodiamonds and in the controlled formation of negatively charged silicon-vacancy centers in such nanodiamonds. Using different adamantane/detonation nanodiamond weight ratios, a series of samples was synthesized at a pressure of 7.5 GPa in the temperature range of 1200–1500 °C. It was found that temperature around 1350 °C, is optimal for the high-yield synthesis of nanodiamonds <50 nm in size. For the first time, controlled formation of negatively charged silicon-vacancy centers in such small nanodiamonds was demonstrated by varying the atomic ratios of silicon/carbon in the precursor in the range of 0.01–1%. Full article
Show Figures

Graphical abstract

14 pages, 2219 KiB  
Article
Aptamer-Hytac Chimeras for Targeted Degradation of SARS-CoV-2 Spike-1
by Carme Fàbrega, Núria Gallisà-Suñé, Alice Zuin, Juan Sebastián Ruíz, Bernat Coll-Martínez, Gemma Fabriàs, Ramon Eritja and Bernat Crosas
Cells 2024, 13(21), 1767; https://doi.org/10.3390/cells13211767 - 25 Oct 2024
Cited by 2 | Viewed by 1218
Abstract
The development of novel tools to tackle viral processes has become a central focus in global health, during the COVID-19 pandemic. The spike protein is currently one of the main SARS-CoV-2 targets, owing to its key roles in infectivity and virion formation. In [...] Read more.
The development of novel tools to tackle viral processes has become a central focus in global health, during the COVID-19 pandemic. The spike protein is currently one of the main SARS-CoV-2 targets, owing to its key roles in infectivity and virion formation. In this context, exploring innovative strategies to block the activity of essential factors of SARS-CoV-2, such as spike proteins, will strengthen the capacity to respond to current and future threats. In the present work, we developed and tested novel bispecific molecules that encompass: (i) oligonucleotide aptamers S901 and S702, which bind to the spike protein through its S1 domain, and (ii) hydrophobic tags, such as adamantane and tert-butyl-carbamate-based ligands. Hydrophobic tags have the capacity to trigger the degradation of targets recruited in the context of a proteolytic chimera by activating quality control pathways. We observed that S901-adamantyl conjugates promote the degradation of the S1 spike domain, stably expressed in human cells by genomic insertion. These results highlight the suitability of aptamers as target-recognition molecules and the robustness of protein quality control pathways triggered by hydrophobic signals, and place aptamer-Hytacs as promising tools for counteracting coronavirus progression in human cells. Full article
Show Figures

Figure 1

18 pages, 2822 KiB  
Article
Effect of Cyclodextrins Formulated in Liposomes and Gold and Selenium Nanoparticles on siRNA Stability in Cell Culture Medium
by Betzaida Castillo Cruz, Sandra Chinapen Barletta, Bryan G. Ortiz Muñoz, Adriana S. Benitez-Reyes, Omar A. Amalbert Perez, Alexander C. Cardona Amador, Pablo E. Vivas-Mejia and Gabriel L. Barletta
Pharmaceuticals 2024, 17(10), 1344; https://doi.org/10.3390/ph17101344 - 8 Oct 2024
Viewed by 1413
Abstract
Background: Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome’s fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and [...] Read more.
Background: Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome’s fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium. Here, we continued that study to include α, γ, methyl-β-cyclodextrins and β-cyclodextrin-modified gold and selenium nanoparticles. Methods: We used Isothermal Titration Calorimetry to study the binding thermodynamics of siRNAs to the cyclodextrin-modified nanoparticles and to screen for the best adamantane derivative to modify the siRNA fragments, and we used gel electrophoresis to study the stabilization effect of siRNA by cyclodextrins and the nanoparticles. Results: We found that only β- and methyl-β-cyclodextrins increased siRNA serum stability. Cyclodextrin-modified selenium nanoparticles also stabilize siRNA fragments in serum, and siRNAs chemically modified with an adamantane moiety (which forms inclusion complexes with the cyclodextrin-modified-nanoparticles) show a strong stabilization effect. Conclusions: β-cyclodextrins are good additives to stabilize siRNA in cell culture medium, and the thermodynamic data we generated of the interaction between cyclodextrins and adamantane analogs (widely used in drug delivery studies), should serve as a guide for future studies where cyclodextrins are sought for the delivery and solvation of small organic molecules. Full article
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
Sandwich-Type Electrochemical Aptasensor with Supramolecular Architecture for Prostate-Specific Antigen
by Anabel Villalonga, Raúl Díaz, Irene Ojeda, Alfredo Sánchez, Beatriz Mayol, Paloma Martínez-Ruiz, Reynaldo Villalonga and Diana Vilela
Molecules 2024, 29(19), 4714; https://doi.org/10.3390/molecules29194714 - 5 Oct 2024
Cited by 3 | Viewed by 1388
Abstract
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface [...] Read more.
A novel sandwich-type electrochemical aptasensor based on supramolecularly immobilized affinity bioreceptor was prepared via host–guest interactions. This method utilizes an adamantane-modified, target-responsive hairpin DNA aptamer as a capture molecular receptor, along with a perthiolated β-cyclodextrin (CD) covalently attached to a gold-modified electrode surface as the transduction element. The proposed sensing strategy employed an enzyme-modified aptamer as the signalling element to develop a sandwich-type aptasensor for detecting prostate-specific antigen (PSA). To achieve this, screen-printed carbon electrodes (SPCEs) with electrodeposited reduced graphene oxide (RGO) and gold nanoferns (AuNFs) were modified with the CD derivative to subsequently anchor the adamantane-modified anti-PSA aptamer via supramolecular associations. The sensing mechanism involves the affinity recognition of PSA molecules on the aptamer-enriched electrode surface, followed by the binding of an anti-PSA aptamer–horseradish peroxidase complex as a labelling element. This sandwich-type arrangement produces an analytical signal upon the addition of H2O2 and hydroquinone as enzyme substrates. The aptasensor successfully detected the biomarker within a concentration range of 0.5 ng/mL to 50 ng/mL, exhibiting high selectivity and a detection limit of 0.11 ng/mL in PBS. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications)
Show Figures

Graphical abstract

15 pages, 2894 KiB  
Article
Memantine and the Kynurenine Pathway in the Brain: Selective Targeting of Kynurenic Acid in the Rat Cerebral Cortex
by Renata Kloc and Ewa M. Urbanska
Cells 2024, 13(17), 1424; https://doi.org/10.3390/cells13171424 - 26 Aug 2024
Cited by 2 | Viewed by 1897
Abstract
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. [...] Read more.
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs’ proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios. Full article
Show Figures

Figure 1

9 pages, 815 KiB  
Article
Preclinical Evaluation of Soluble Epoxide Hydrolase Inhibitor AMHDU against Neuropathic Pain
by Denis Babkov, Natalya Eliseeva, Kristina Adzhienko, Viktoria Bagmetova, Dmitry Danilov, Cynthia B. McReynolds, Christophe Morisseau, Bruce D. Hammock and Vladimir Burmistrov
Int. J. Mol. Sci. 2024, 25(16), 8841; https://doi.org/10.3390/ijms25168841 - 14 Aug 2024
Cited by 2 | Viewed by 1895
Abstract
Inhibition of soluble epoxide hydrolase (sEH) is a promising therapeutic strategy for treating neuropathic pain. These inhibitors effectively reduce diabetic neuropathic pain and inflammation induced by Freund’s adjuvant which makes them a suitable alternative to traditional opioids. This study showcased the notable analgesic [...] Read more.
Inhibition of soluble epoxide hydrolase (sEH) is a promising therapeutic strategy for treating neuropathic pain. These inhibitors effectively reduce diabetic neuropathic pain and inflammation induced by Freund’s adjuvant which makes them a suitable alternative to traditional opioids. This study showcased the notable analgesic effects of compound AMHDU (1,1′-(hexane-1,6-diyl)bis(3-((adamantan-1-yl)methyl)urea)) in both inflammatory and diabetic neuropathy models. While lacking anti-inflammatory properties in a paw edema model, AMHDU is comparable to celecoxib as an analgesic in 30 mg/kg dose administrated by intraperitoneal injection. In a diabetic tactile allodynia model, AMHDU showed a prominent analgesic activity in 10 mg/kg intraperitoneal dose (p < 0.05). The effect is comparable to that of gabapentin, but without the risk of dependence due to a different mechanism of action. Low acute oral toxicity (>2000 mg/kg) and a high therapeutic index makes AMHDU a promising candidate for further structure optimization and preclinical evaluation. Full article
(This article belongs to the Special Issue Cyclic and Heterocyclic Compounds in Drug Synthesis and Delivery)
Show Figures

Graphical abstract

15 pages, 1481 KiB  
Article
Chemical Composition and Biological Properties of Achillea cucullata Extracts from Leaves and Flowers
by Manal Abdulaziz Binobead and Ibrahim M. Aziz
Separations 2024, 11(8), 236; https://doi.org/10.3390/separations11080236 - 1 Aug 2024
Cited by 4 | Viewed by 1470
Abstract
Achillea cucullata is a perennial herbaceous plant that has a long history of medical use in many cultures. The present research focuses on the biological activity and therapeutic potential of A. cucullata, namely its antibacterial and anticancer properties. While previous studies have [...] Read more.
Achillea cucullata is a perennial herbaceous plant that has a long history of medical use in many cultures. The present research focuses on the biological activity and therapeutic potential of A. cucullata, namely its antibacterial and anticancer properties. While previous studies have shed light on the cytotoxic and antibacterial capabilities of Achillea cucullata aerial parts, there is still a considerable gap in knowledge concerning the anticancer potential of leaf and flower extracts. A. cucullata’s leaves and flowers were extracted using methanol. The total phenolic and flavonoid contents were evaluated. The antioxidant, cytotoxic, and antibacterial properties were evaluated against both Gram-positive and Gram-negative bacteria. The Gas Chromatography–Mass Spectrometry (GC–MS) analysis of A. cucullata leaf and flower extracts showed numerous amounts of bioactive components, including carvacrol, a TBDMS derivative; 2-Myristynoyl-glycinamide, acetylaminobenzothiazol-2-yl)-2-(adamantan-1-yl); Isolongifolol; (3E,10Z)-Oxacyclotrideca-3,10-diene-2,7-dione; and 3-Heptanone, 5-hydroxy-1,7-diphenyl. The extract has a high level of phenols and flavonoids. Cytotoxicity studies found that A. cucullata leaves and flowers had dose-dependent toxicity against MCF-7 and HepG2 cancer cell lines, with flowers being more effective. Apoptotic genes (caspase-3, 8, 9, and Bax) were upregulated in treated MCF-7 and HepG2 cells, whereas anti-apoptotic genes (Bcl-xL and Bcl-2) were reduced. Antibacterial screening revealed significant activity against both Gram-positive and Gram-negative pathogens. Overall, the research highlights the varied therapeutic potentials of A. cucullata, adding to the knowledge of plant-derived extracts in lowering disease risks. Future research should concentrate on in vivo studies to assess the effectiveness and safety of these substances. Full article
(This article belongs to the Special Issue Extraction, Purification and Application of Bioactive Compounds)
Show Figures

Figure 1

19 pages, 3745 KiB  
Article
Insecticidal Properties and Chemical Characterization of Laurus nobilis L. Essential Oils from Two Regions of Morocco against Callosobruchus maculatus (Coleoptera: Bruchinae)
by Rachid El Baghazaoui, Saadia Belmalha, Abdellatif Boutagayout, Laila Nassiri, Salma El Alami, Jean-Michel Savoie and El Houssine Bouiamrine
Agriculture 2024, 14(7), 1150; https://doi.org/10.3390/agriculture14071150 - 15 Jul 2024
Cited by 3 | Viewed by 1986
Abstract
Morocco is a significant botanical reservoir that boasts a wealth of raw materials with promising applications across various industrial sectors, notably in pharmaceuticals and food. The objective of this study was to assess the effectiveness of essential oils (EOs) derived from Laurus nobilis [...] Read more.
Morocco is a significant botanical reservoir that boasts a wealth of raw materials with promising applications across various industrial sectors, notably in pharmaceuticals and food. The objective of this study was to assess the effectiveness of essential oils (EOs) derived from Laurus nobilis L. leaves originating from the Tanger (EOT) and Meknes (EOM) regions in combating Callosobruchus maculatus infection. The chemical compositions of these oils were examined using Fourier transform infrared (FTIR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). The biological activity of the EOs was evaluated via repulsion and fumigation tests against C. maculatus at varying concentrations. FTIR analysis revealed distinct vibrational bands indicative of various chemical compounds. GC-MS analysis was used to delineate the major chemical constituents of the EOs. The three predominant compounds in the EOT were 1,8-cineole (37.64%), linalool (16.40%), and adamantane (12.00%), whereas 1,8-cineole (47.84%), toluene (17.60%), and α-phellandrene (8.44%) were the most abundant in the EOM. Notably, the EOs exhibited significant repellent activity against C. maculatus, with repulsion percentages ranging from 51.11 to 90.00% in Tanger and 67.78 to 93.33% in Meknes. Mortality rates varied from 0 to 100% depending on the treatment. However, the mean concentrations showed mortality rates ranging from 29.44 to 65.56% for the EOT and from 21.11 to 67.78% for the EOM, with LD50 values of 11.96 μL/L and 5.22 μL/L. Docking studies revealed that 1,8-cineole had the highest binding affinity for the active site of acetylcholinesterase, thus confirming its toxic activity against C. maculatus. The findings of this study highlight the ability of EOs extracted from L. nobilis in the Moroccan regions of Tanger and Meknes to act as effective insecticides and repellents against C. maculatus, thereby highlighting avenues for further exploration of pest management and agricultural practices. Full article
(This article belongs to the Special Issue Advances in Agricultural Preharvest Products Management)
Show Figures

Figure 1

5 pages, 550 KiB  
Communication
A New Method for the Synthesis of 1-(1-Isocyanoethyl)adamantane
by Dmitry Pitushkin and Gennady Butov
Molbank 2024, 2024(2), M1833; https://doi.org/10.3390/M1833 - 6 Jun 2024
Cited by 1 | Viewed by 1349
Abstract
A novel single-step method has been developed for the synthesis of 1-(1-isocyanoethyl)adamantane from 1-(1-adamantylethyl)amine, chloroform, and t-BuOK, in a dichloromethane/tert-butanol (1:1) medium, yielding 92%, which is 27% higher compared to the known method, without the use of highly toxic compounds. [...] Read more.
A novel single-step method has been developed for the synthesis of 1-(1-isocyanoethyl)adamantane from 1-(1-adamantylethyl)amine, chloroform, and t-BuOK, in a dichloromethane/tert-butanol (1:1) medium, yielding 92%, which is 27% higher compared to the known method, without the use of highly toxic compounds. The product was characterized using 1H and 13C NMR spectroscopy, GC-MS, and elemental analysis. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

8 pages, 1286 KiB  
Communication
Adamantylated Calix[4]arenes Bearing CuAAC-Ready 2-Azidoethyl or Propargyl Functionalities
by Alexander Gorbunov, Maria Malakhova, Stanislav Bezzubov, Ivan Lentin, Vladimir Kovalev and Ivan Vatsouro
Molbank 2024, 2024(2), M1821; https://doi.org/10.3390/M1821 - 11 May 2024
Viewed by 1691
Abstract
1,3-Alternate calix[4]arenes were prepared, having bulky adamantyl groups in the p-positions of all four aromatic units of the macrocycles and pairs of propargyl or 2-azidoethyl groups alternating with n-propyl groups at the phenol oxygen atoms. The step-wise syntheses were carried out [...] Read more.
1,3-Alternate calix[4]arenes were prepared, having bulky adamantyl groups in the p-positions of all four aromatic units of the macrocycles and pairs of propargyl or 2-azidoethyl groups alternating with n-propyl groups at the phenol oxygen atoms. The step-wise syntheses were carried out through a selective distal alkylation of the parent p-adamantylcalix[4]arene with propargyl bromide or 1,2-dibromoethane, resulting in calix[4]arenes bearing pairs of propargyl or 2-bromoethyl groups at their narrow rims. The bromine atoms were replaced by azide groups, and then both calix[4]arene diethers were exhaustively alkylated at the remaining OH-groups with 1-iodopropane under stereoselective conditions to fix the macrocycles in an 1,3-alternate shape. The structures of the prepared p-adamantylcalix[4]arenes were confirmed by NMR and HRMS data, and, for the 1,3-alternate dipropargyl ether, the X-ray diffraction data were also collected. Preliminary data on the reactivity of the prepared calixarenes under the CuAAC conditions suggested a strong steric hampering created by the adamantane units nearby the reacting alkyne or azide groups that affected the outcome of the two-fold cycloaddition involving the calixarene bis(azides) or bis(alkynes) as complementary partners. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

Back to TopTop