Adamantylated Calix[4]arenes Bearing CuAAC-Ready 2-Azidoethyl or Propargyl Functionalities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. 5,11,17,23-Tetra(1-adamantyl)-25,27-dihydroxy-26,28-di(2-propynyloxy)calix[4]arene 2
3.2. 5,11,17,23-Tetra(1-adamantyl)-25,27-di(1-propyloxy)-26,28-di(2-propynyloxy)calix[4]arene (1,3-alternate) 3
3.3. 5,11,17,23-Tetra(1-adamantyl)-25,27-di(2-bromoethyloxy)-26,28-dihydroxycalix[4]arene 4
3.4. 5,11,17,23-Tetra(1-adamantyl)-25,27-di(2-azidoethyloxy)-26,28-dihydroxycalix[4]arene 5
3.5. 5,11,17,23-Tetra(1-adamantyl)-25,27-di(2-azidoethyloxy)-26,28-di(1-propyloxy)calix[4]arene (1,3-alternate) 6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomanova, S.; Andonova, V. Adamantane-containing drug delivery systems. Pharmacia 2023, 70, 1057–1066. [Google Scholar] [CrossRef]
- Wanka, L.; Iqbal, K.; Schreiner, P.R. The Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chem. Rev. 2013, 113, 3516–3604. [Google Scholar] [CrossRef] [PubMed]
- Arnaud-Neu, F.; Collins, E.M.; Deasy, M.; Ferguson, G.; Harris, S.J.; Kaitner, B.; Lough, A.J.; McKervey, M.A.; Marques, E.; Ruhl, B.L.; et al. Synthesis, X-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors. J. Am. Chem. Soc. 1989, 111, 8681–8691. [Google Scholar] [CrossRef]
- Khomich, A.N.; Shokova, E.A.; Kovalev, V.V. Synthesis of p-(1-Adamantyl)- and p-(3-Substituted-1-Adamantyl)calix[4]arenes. Synlett 1994, 1994, 1027–1028. [Google Scholar] [CrossRef]
- Ovsyannikov, A.S.; Strelnikova, I.V.; Samigullina, A.I.; Islamov, D.R.; Cherosov, M.A.; Batulin, R.G.; Kiiamov, A.G.; Gubaidullin, A.T.; Dorovatovskii, P.V.; Solovieva, S.E.; et al. Influence of neutral auxiliary ligands on crystal structure and magnetic behaviour of new [Mn II2Mn III2] clusters supported by p-adamantylcalix[4]arene. New J. Chem. 2024, 48, 203–215. [Google Scholar] [CrossRef]
- Vatsouro, I.; Serebryannikova, A.; Wang, L.; Hubscher-Bruder, V.; Shokova, E.; Bolte, M.; Arnaud-Neu, F.; Böhmer, V. Narrow rim CMPO/adamantylcalix[4]arenes for the extraction of lanthanides and actinides. Tetrahedron 2011, 67, 8092–8101. [Google Scholar] [CrossRef]
- Yang, Y.; Swager, T.M. Main-Chain Calix[4]arene Elastomers by Ring-Opening Metathesis Polymerization. Macromolecules 2007, 40, 7437–7440. [Google Scholar] [CrossRef]
- Bruinink, C.M.; Nijhuis, C.A.; Péter, M.; Dordi, B.; Crespo-Biel, O.; Auletta, T.; Mulder, A.; Schönherr, H.; Vancso, G.J.; Huskens, J.; et al. Supramolecular Microcontact Printing and Dip-Pen Nanolithography on Molecular Printboards. Chem. Eur. J. 2005, 11, 3988–3996. [Google Scholar] [CrossRef]
- Iuliano, V.; Talotta, C.; Gaeta, C.; Hickey, N.; Geremia, S.; Vatsouro, I.; Kovalev, V.; Neri, P. Influence of exo-Adamantyl Groups and endo-OH Functions on the Threading of Calix[6]arene Macrocycle. J. Org. Chem. 2020, 85, 12585–12593. [Google Scholar] [CrossRef]
- Puchnin, K.; Zaikin, P.; Cheshkov, D.; Vatsouro, I.; Kovalev, V. Calix[4]tubes: An Approach to Functionalization. Chem. Eur. J. 2012, 18, 10954–10968. [Google Scholar] [CrossRef]
- Ferreira, A.S.D.; Ascenso, J.R.; Marcos, P.M.; Schurhammer, R.; Hickey, N.; Geremia, S. Calixarene-Based lead receptors: An NMR, DFT and X-Ray synergetic approach. Supramol. Chem. 2021, 33, 231–244. [Google Scholar] [CrossRef]
- Lazzarotto, M.; Los Weinert, P.; Lazzarotto, M. Electronic parameters of cation complexation by calixarene ionophores. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 313–322. [Google Scholar] [CrossRef]
- Pop, A.; Vysotsky, M.; Saadioui, M.; Böhmer, V. Self-assembled dimers with supramolecular chirality. Chem. Commun. 2003, 10, 1124–1125. [Google Scholar] [CrossRef]
- Pinkhassik, E.; Sidorov, V.; Stibor, I. Calix[4]arene-Based Receptors with Hydrogen-Bonding Groups Immersed into a Large Cavity. J. Org. Chem. 1998, 63, 9644–9651. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Ryu, E.-H.; Zhao, Y. Efficient Synthesis of Water-Soluble Calixarenes Using Click Chemistry. Org. Lett. 2005, 7, 1035–1037. [Google Scholar] [CrossRef]
- Meldal, M.; Tornøe, C.W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef]
- Pineda-Castañeda, H.M.; Rivera-Monroy, Z.J.; Maldonado, M. Copper(I)-Catalyzed Alkyne–Azide Cycloaddition (CuAAC) “Click” Reaction: A Powerful Tool for Functionalizing Polyhydroxylated Platforms. ACS Omega 2023, 8, 3650–3666. [Google Scholar] [CrossRef]
- Požar, J.; Cvetnić, M.; Usenik, A.; Cindro, N.; Horvat, G.; Leko, K.; Modrušan, M.; Tomišić, V. The Role of Triazole and Glucose Moieties in Alkali Metal Cation Complexation by Lower-Rim Tertiary-Amide Calix[4]arene Derivatives. Molecules 2022, 27, 470. [Google Scholar] [CrossRef]
- Schneider, J.P.; Tommasone, S.; Della Sala, P.; Gaeta, C.; Talotta, C.; Tarnus, C.; Neri, P.; Bodlenner, A.; Compain, P. Synthesis and Glycosidase Inhibition Properties of Calix[8]arene-Based Iminosugar Click Clusters. Pharmaceuticals 2020, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Kajouj, S.; Marcelis, L.; Mattiuzzi, A.; Grassin, A.; Dufour, D.; Van Antwerpen, P.; Boturyn, D.; Defrancq, E.; Surin, M.; De Winter, J.; et al. Synthesis and photophysical studies of a multivalent photoreactive RuII-calix[4]arene complex bearing RGD-containing cyclopentapeptides. Beilstein J. Org. Chem. 2018, 14, 1758–1768. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, J.; Kim, S.K. Calix[4]arenes bearing triazolyl anthracenes: Hg2+-selective receptors exhibiting fluorescence or dual optical responses. New J. Chem. 2021, 45, 18609–18614. [Google Scholar] [CrossRef]
- Georghiou, P.E.; Rahman, S.; Alrawashdeh, A.; Alodhayb, A.; Valluru, G.; Unikela, K.S.; Bodwell, G.J. Synthesis, supramolecular complexation and DFT studies of a bis(pyrene)-appended ‘capped’ triazole-linked calix[4]arene as Zn2+ and Cd2+ fluorescent chemosensors. Supramol. Chem. 2020, 32, 325–333. [Google Scholar] [CrossRef]
- Hosseinzadeh, R.; Domehri, E.; Tajbakhsh, M.; Bekhradnia, A. New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: Application for Cu2+ detection in human blood serum. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 245–252. [Google Scholar] [CrossRef]
- Gorbunov, A.; Kuznetsova, J.; Puchnin, K.; Kovalev, V.; Vatsouro, I. Triazolated calix[4]arenes from 2-azidoethylated precursors: Is there a difference in the way the triazoles are attached to narrow rims? New J. Chem. 2019, 43, 4562–4580. [Google Scholar] [CrossRef]
- Song, M.; Sun, Z.; Han, C.; Tian, D.; Li, H.; Kim, J.S. Calixarene-Based Chemosensors by Means of Click Chemistry. Chem. Asian J. 2014, 9, 2344–2357. [Google Scholar] [CrossRef]
- Jaime, C.; De Mendoza, J.; Prados, P.; Nieto, P.M.; Sanchez, C. 13C NMR chemical shifts. A single rule to determine the conformation of calix[4]arenes. J. Org. Chem. 1991, 56, 3372–3376. [Google Scholar] [CrossRef]
- Baklouti, L.; Harrowfield, J.; Pulpoka, B.; Vicens, J. 1,3-Alternate, the Smart Conformation of Calix[4]arenes. Mini-Rev. Org. Chem. 2006, 3, 355–384. [Google Scholar] [CrossRef]
- Gorbunov, A.; Ozerov, N.; Malakhova, M.; Eshtukov, A.; Cheshkov, D.; Bezzubov, S.; Kovalev, V.; Vatsouro, I. Assembling triazolated calix[4]semitubes by means of copper(I)-catalyzed azide–alkyne cycloaddition. Org. Chem. Front. 2021, 8, 3853–3866. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS. Version 2008/1; Bruker AXS Inc.: Karlsruhe, Germany, 2008. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbunov, A.; Malakhova, M.; Bezzubov, S.; Lentin, I.; Kovalev, V.; Vatsouro, I. Adamantylated Calix[4]arenes Bearing CuAAC-Ready 2-Azidoethyl or Propargyl Functionalities. Molbank 2024, 2024, M1821. https://doi.org/10.3390/M1821
Gorbunov A, Malakhova M, Bezzubov S, Lentin I, Kovalev V, Vatsouro I. Adamantylated Calix[4]arenes Bearing CuAAC-Ready 2-Azidoethyl or Propargyl Functionalities. Molbank. 2024; 2024(2):M1821. https://doi.org/10.3390/M1821
Chicago/Turabian StyleGorbunov, Alexander, Maria Malakhova, Stanislav Bezzubov, Ivan Lentin, Vladimir Kovalev, and Ivan Vatsouro. 2024. "Adamantylated Calix[4]arenes Bearing CuAAC-Ready 2-Azidoethyl or Propargyl Functionalities" Molbank 2024, no. 2: M1821. https://doi.org/10.3390/M1821
APA StyleGorbunov, A., Malakhova, M., Bezzubov, S., Lentin, I., Kovalev, V., & Vatsouro, I. (2024). Adamantylated Calix[4]arenes Bearing CuAAC-Ready 2-Azidoethyl or Propargyl Functionalities. Molbank, 2024(2), M1821. https://doi.org/10.3390/M1821