Cyclodextrin-Based Gene and Drug Delivery Applications

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 2757

Special Issue Editors


E-Mail Website
Guest Editor
Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
Interests: cyclodextrin; gene delivery; drug delivery; nanocarriers; biocompatibility; controlled release; targeted therapy

Special Issue Information

Dear Colleagues,

Cyclodextrins have emerged as versatile and promising materials in the field of drug delivery, owing to their unique structural properties and biocompatibility. The ability of cyclodextrins to form inclusion complexes with a wide range of guest molecules, including drugs and nucleic acids, has paved the way for innovative approaches in gene and drug delivery systems.

This Special Issue aims to showcase cutting-edge research, advancements, and applications of cyclodextrin-based delivery systems in the context of gene therapy and drug delivery. We welcome original research articles, reviews, and perspectives covering various aspects of this interdisciplinary field, including but not limited to the following:

  1. Design and synthesis of cyclodextrin-based carriers for gene and drug delivery;
  2. Formulation and characterization of cyclodextrin-based delivery systems;
  3. Applications of cyclodextrin-based carriers in targeted drug delivery;
  4. Cyclodextrin-based nanoparticles for gene delivery and therapy;
  5. In vitro and in vivo studies on the effectiveness of cyclodextrin-based delivery systems;
  6. Challenges and future perspectives in the development of cyclodextrin-based delivery systems.

Submitting your work to this Special Issue offers an excellent opportunity to contribute to the advancement of knowledge in this rapidly evolving area and to showcase your research to a global audience of peers and experts in the field. Furthermore, all submissions will undergo a rigorous peer-review process to ensure the highest quality of published content.

Prof. Dr. Francesco Trotta
Dr. Yousef Khazaei Monfared
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cyclodextrin
  • gene delivery
  • drug delivery
  • nanocarriers
  • biocompatibility
  • controlled release
  • targeted therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4451 KiB  
Article
Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment
by Kendra Sorroza-Martínez, Ignacio González-Sánchez, Raúl Villamil-Ramos, Marco Cerbón, Jorge Antonio Guerrero-Álvarez, Cristina Coronel-Cruz, Ernesto Rivera and Israel González-Méndez
Pharmaceutics 2024, 16(12), 1509; https://doi.org/10.3390/pharmaceutics16121509 - 23 Nov 2024
Viewed by 1067
Abstract
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results [...] Read more.
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane–hydrazone–doxorubicin (Ad-h-Dox) prodrug. Methods: The formation of inclusion complexes (ICs) between the prodrug and all the βCD cavities present on the surface of the PAMAM-βCD dendrimer was followed by 1H-NMR titration and corroborated by 2D NOESY experiments. A full characterization of the supramolecular assembly was performed in the solid state by thermal analysis (DSC/TGA) and scanning electron microscopy (SEM) and in solution by the DOSY NMR technique in D2O. Furthermore, the Dox release profiles from the PAMAM-βCD/Ad-h-Dox assembly at different pH values was studied by comparing the efficiency against a native βCD/Ad-h-Dox IC. Additionally, in vitro cytotoxic activity assays were performed for the nanocarrier alone and the two supramolecular assemblies in different carcinogenic cell lines. Results: The PAMAM-βCD/Ad-h-Dox assembly was adequately characterized, and the cytotoxic activity results demonstrate that the nanocarrier alone and its hydrolysis product are innocuous compared to the PAMAM-βCD/Ad-h-Dox nanocarrier that showed cytotoxicity equivalent to free Dox in the tested cancer cell lines. The in vitro drug release assays for the PAMAM-βCD/Ad-h-Dox system showed an acidic pH-dependent behavior and a prolonged profile of up to more than 72 h. Conclusions: The design of PAMAM-βCD/Ad-h-Dox consists of a new controlled and prolonged Dox release system for potential use in cancer treatment. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Gene and Drug Delivery Applications)
Show Figures

Figure 1

19 pages, 2737 KiB  
Article
Formulation and Characterization of β-Cyclodextrins–Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells
by Kuppu Sakthi Velu, Sonamuthu Jegatheeswaran, Muhammad Saeed Akhtar, Mohammad Rizwan Khan, Sonaimuthu Mohandoss and Naushad Ahmad
Pharmaceutics 2024, 16(12), 1494; https://doi.org/10.3390/pharmaceutics16121494 - 21 Nov 2024
Viewed by 929
Abstract
Background/Objectives: Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. Methods: This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), [...] Read more.
Background/Objectives: Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. Methods: This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. Results: The formation of the β-CD:NTX in an aqueous solution was verified using UV–visible spectroscopy, confirming a 1:1 inclusion complex. Characterization of the solid β-CD:NTX complexes was confirmed via FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and DSC-TGA analyses. Molecular docking studies revealed that the NTX thiazole ring with the nitro group was positioned within the β-CDs cavity, while the benzene ring remained outside. Phase solubility tests showed that β-CD:NTX complexes were formed with high stability constants, demonstrating a linear increase in NTX solubility as the β-CD concentration increased. Dissolution tests revealed rapid and nearly complete NTX release within 90 min for β-CD:NTX and Hβ-CD:NTX complexes. The β-CD:NTX complexes were tested for their antiviral activity against Herpes simplex virus (HSV-1) cultures. Results showed that the Hβ-CD:NTX complex had significantly higher antiviral efficacy than β-CD:NTX and free NTX alone. Moreover, cytotoxicity and cellular uptake studies on Vero cells indicated that the Hβ-CD:NTX complex demonstrated lower cytotoxicity and had the highest IC50 value, followed by β-CD:NTX and free NTX. Conclusions: These findings suggest that Hβ-CD:NTX inclusion complexes may serve as effective carriers for delivering NTX in HSV-1 treatments using Vero cell models. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Gene and Drug Delivery Applications)
Show Figures

Figure 1

Back to TopTop