Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (514)

Search Parameters:
Keywords = active-disturbance rejection control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Viewed by 210
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 4629 KiB  
Article
Wind-Resistant UAV Landing Control Based on Drift Angle Control Strategy
by Haonan Chen, Zhengyou Wen, Yu Zhang, Guoqiang Su, Liaoni Wu and Kun Xie
Aerospace 2025, 12(8), 678; https://doi.org/10.3390/aerospace12080678 (registering DOI) - 29 Jul 2025
Viewed by 110
Abstract
Addressing lateral-directional control challenges during unmanned aerial vehicle (UAV) landing in complex wind fields, this study proposes a drift angle control strategy that integrates coordinated heading and trajectory regulation. An adaptive radius optimization method for the Dubins approach path is designed using wind [...] Read more.
Addressing lateral-directional control challenges during unmanned aerial vehicle (UAV) landing in complex wind fields, this study proposes a drift angle control strategy that integrates coordinated heading and trajectory regulation. An adaptive radius optimization method for the Dubins approach path is designed using wind speed estimation. By developing a wind-coupled flight dynamics model, we establish a roll angle control loop combining the L1 nonlinear guidance law with Linear Active Disturbance Rejection Control (LADRC). Simulation tests against conventional sideslip approach and crab approach, along with flight tests, confirm that the proposed autonomous landing system achieves smoother attitude transitions during landing while meeting all touchdown performance requirements. This solution provides a theoretically rigorous and practically viable approach for safe UAV landings in challenging wind conditions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 323
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

28 pages, 42031 KiB  
Article
A Building Crack Detection UAV System Based on Deep Learning and Linear Active Disturbance Rejection Control Algorithm
by Lei Zhang, Lili Gong, Le Wang, Zhou Wang and Song Yan
Electronics 2025, 14(15), 2975; https://doi.org/10.3390/electronics14152975 - 25 Jul 2025
Viewed by 188
Abstract
This paper presents a UAV-based building crack real-time detection system that integrates an improved YOLOv8 algorithm with Linear Active Disturbance Rejection Control (LADRC). The system is equipped with a high-resolution camera and sensors to capture high-definition images and height information. First, a trajectory [...] Read more.
This paper presents a UAV-based building crack real-time detection system that integrates an improved YOLOv8 algorithm with Linear Active Disturbance Rejection Control (LADRC). The system is equipped with a high-resolution camera and sensors to capture high-definition images and height information. First, a trajectory tracking controller based on LADRC was designed for the UAV, which uses a linear extended state observer to estimate and compensate for unknown disturbances such as wind interference, significantly enhancing the flight stability of the UAV in complex environments and ensuring stable crack image acquisition. Secondly, we integrated Convolutional Block Attention Module (CBAM) into the YOLOv8 model, dynamically enhancing crack feature extraction through both channel and spatial attention mechanisms, thereby improving recognition robustness in complex backgrounds. Lastly, a skeleton extraction algorithm was applied for the secondary processing of the segmented cracks, enabling precise calculations of crack length and average width and outputting the results to a user interface for visualization. The experimental results demonstrate that the system successfully identifies and extracts crack regions, accurately calculates crack dimensions, and enables real-time monitoring through high-speed data transmission to the ground station. Compared to traditional manual inspection methods, the system significantly improves detection efficiency while maintaining high accuracy and reliability. Full article
Show Figures

Figure 1

18 pages, 1729 KiB  
Article
Research on Monitoring and Control Systems for Belt Conveyor Electric Drives
by Yuriy Kozhubaev, Diana Novak, Viktor Karpukhin, Roman Ershov and Haodong Cheng
Automation 2025, 6(3), 34; https://doi.org/10.3390/automation6030034 - 23 Jul 2025
Viewed by 248
Abstract
In the context of the mining industry, the belt conveyor is a critical piece of equipment. The motor constitutes the primary component of the belt conveyor apparatus, and its stable and accurate operation can significantly influence the performance of the belt conveyor apparatus. [...] Read more.
In the context of the mining industry, the belt conveyor is a critical piece of equipment. The motor constitutes the primary component of the belt conveyor apparatus, and its stable and accurate operation can significantly influence the performance of the belt conveyor apparatus. This paper introduces an integrated control approach combining vector control methodology with active disturbance rejection control (ADRC) for velocity regulation and model predictive control (MPC) for current tracking. The ADRC framework actively compensates for load disturbances and parameter variations during speed control, while MPC achieves precise current regulation with minimal tracking error. Validation involved comprehensive MATLAB/Simulink R2024a simulations modeling PMSM behavior under mining-specific operating conditions. The results demonstrate substantial improvements in dynamic response characteristics and disturbance rejection capabilities compared to conventional control strategies. The proposed methodology effectively addresses critical challenges in mining conveyor applications, enhancing operational reliability and system longevity. Full article
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 337
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

21 pages, 8715 KiB  
Article
DDPG-ADRC-Based Load Frequency Control for Multi-Region Power Systems with Renewable Energy Sources and Energy Storage Equipment
by Zhenlan Dou, Chunyan Zhang, Xichao Zhou, Dan Gao and Xinghua Liu
Energies 2025, 18(14), 3610; https://doi.org/10.3390/en18143610 - 8 Jul 2025
Viewed by 260
Abstract
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region [...] Read more.
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region interconnected power systems are analyzed, which provides a basis for the subsequent RES access. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are adopted due to their rapid response capabilities and fast charge–discharge characteristics. To stabilize the frequency fluctuation, a first-order ADRC is designed, utilizing the anti-perturbation estimation capability of the first-order ADRC to achieve effective control. In addition, the system states are estimated using a linear expansion state observer. Based on the output of the observer, the appropriate feedback control law is selected. The DDPG-ADRC parameter optimization model is constructed to adaptively adjust the control parameters of ADRC based on the target frequency deviation and power deviation. The actor and critic networks are continuously updated according to the actual system response to ensure stable system operation. Finally, the experiment demonstrated that the proposed method outperforms traditional methods across all performance indicators, particularly excelling in reducing adjustment time (45.8% decrease) and overshoot (60% reduction). Full article
Show Figures

Figure 1

23 pages, 6299 KiB  
Article
Multi-Valve Coordinated Disturbance Rejection Control for an Intake Pressure System Using External Penalty Functions
by Louyue Zhang, Duoqi Shi, Chao Zhai, Zhihong Dan, Hehong Zhang, Xi Wang and Gaoxi Xiao
Actuators 2025, 14(7), 334; https://doi.org/10.3390/act14070334 - 2 Jul 2025
Viewed by 245
Abstract
Altitude test facilities for aero-engines employ multi-chamber, multi-valve intake systems that require effective decoupling and strong disturbance rejection during transient tests. This paper proposes a coordinated active disturbance rejection control (ADRC) scheme based on external penalty functions. The chamber pressure safety limit is [...] Read more.
Altitude test facilities for aero-engines employ multi-chamber, multi-valve intake systems that require effective decoupling and strong disturbance rejection during transient tests. This paper proposes a coordinated active disturbance rejection control (ADRC) scheme based on external penalty functions. The chamber pressure safety limit is formulated as an inequality-constrained optimization problem, and an exponential penalty together with a gradient based algorithm is designed for dynamic constraint relaxation, with guaranteed global convergence. A coordination term is then integrated into a distributed ADRC framework to yield a multi-valve coordinated ADRC controller, whose asymptotic stability is established via Lyapunov theory. Hardware-in-the-loop simulations using MATLAB/Simulink and a PLC demonstrate that, under ±3 kPa pressure constraints, the maximum engine inlet pressure error is 1.782 kPa (77.1% lower than PID control), and under an 80 kg/s2 flow-rate disturbance, valve oscillations decrease from ±27% to ±5%. These results confirm the superior disturbance rejection and decoupling performance of the proposed method. Full article
(This article belongs to the Special Issue Actuation and Robust Control Technologies for Aerospace Applications)
Show Figures

Figure 1

20 pages, 20845 KiB  
Article
Research on Active Disturbance Rejection Control of Rigid–Flexible Coupled Constant Force Actuator
by Chuanxing Jiang, Zhijun Yang, Jun Zheng, Bangshang Fu and Youdun Bai
Actuators 2025, 14(7), 325; https://doi.org/10.3390/act14070325 - 30 Jun 2025
Viewed by 288
Abstract
This study introduces a rigid–flexible coupled constant force actuator integrated with Active Disturbance Rejection Control (ADRC) to tackle the rigidity–compliance trade-off in precision force-sensitive applications. The actuator utilizes compliant hinges to decrease contact stiffness by three orders of magnitude ( [...] Read more.
This study introduces a rigid–flexible coupled constant force actuator integrated with Active Disturbance Rejection Control (ADRC) to tackle the rigidity–compliance trade-off in precision force-sensitive applications. The actuator utilizes compliant hinges to decrease contact stiffness by three orders of magnitude (106103 N/m), facilitating effective force management through millimeter-scale placement (0.1∼1 mm) and inherently mitigating high-frequency disturbances. The ADRC framework, augmented by an Extended State Observer (ESO), dynamically assesses and compensates for internal nonlinearities (such as friction hysteresis) and external disturbances without necessitating accurate system models. Experimental results indicate enhanced performance compared to PID control: under dynamic disturbances, force deviations are limited to ±0.2 N with a 98.5% reduction in mean absolute error, a 96.3% increase in settling speed, and 99% suppression of oscillations. The co-design of mechanical compliance with model-free control addresses the constraints of traditional high-stiffness systems, providing a scalable solution for industrial robots, compliant material processing, and medical device operations. Validation of the prototype under sinusoidal perturbations demonstrates reliable force regulation (settling time <0.56 s, errors <0.5 N), underscoring its relevance in dynamic situations. This study integrates theoretical innovation with experimental precision, enhancing intelligent manufacturing systems via adaptive control and structural synergy. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults
by A. Srinidhi, R. Raja, J. Alzabut, S. Vimal Kumar and M. Niezabitowski
Automation 2025, 6(3), 28; https://doi.org/10.3390/automation6030028 - 30 Jun 2025
Viewed by 350
Abstract
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, [...] Read more.
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, often address these challenges in isolation and with increased conservatism. In contrast, this work introduces a unified framework that integrates fault-tolerant control, delay compensation, and robust state estimation within a dissipativity-based setting. A novel dissipativity analysis tailored to Electric Vehicle Active Suspension Systems (EV-ASSs) is developed, with nonzero delay bounds explicitly incorporated into the stability conditions. The observer is designed to ensure accurate state estimation under gain perturbations, enabling robust full-state feedback control. Stability and performance criteria are formulated via Linear Matrix Inequalities (LMIs) using advanced integral inequalities to reduce conservatism. Numerical simulations validate the proposed method, demonstrating effective fault-tolerant performance, disturbance rejection, and precise state reconstruction, thereby extending beyond the capabilities of traditional control frameworks. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

27 pages, 16207 KiB  
Article
Adaptive Linear Active Disturbance Rejection Cooperative Control of Multi-Point Hybrid Suspension System
by Shuai Yang, Jie Yang and Fazhu Zhou
Actuators 2025, 14(7), 312; https://doi.org/10.3390/act14070312 - 24 Jun 2025
Viewed by 221
Abstract
The hybrid maglev train exhibits advantages such as a large suspension gap, high load-to-weight ratio, and low suspension energy consumption. However, challenges, including unmodeled uncertainties and multi-point coupling interference in the suspension system, may degrade control performance. To enhance the global anti-interference capability [...] Read more.
The hybrid maglev train exhibits advantages such as a large suspension gap, high load-to-weight ratio, and low suspension energy consumption. However, challenges, including unmodeled uncertainties and multi-point coupling interference in the suspension system, may degrade control performance. To enhance the global anti-interference capability of the multi-point hybrid suspension system, an adaptive linear active disturbance rejection cooperative control (ALADRCC) method is proposed. First, dynamic models of single-point and multi-point hybrid suspension systems are established, and coupling relationships among multiple suspension points are analyzed. Second, an adaptive linear extended state observer (ALESO) is designed to improve dynamic response performance and noise suppression capability. Subsequently, a coupling cooperative compensator (CCC) is designed and integrated into the linear error feedback control law of adaptive linear active disturbance rejection control (ALADRC), enabling cross-coupling compensation between the suspension gap and its variation rate to enhance multi-point synchronization. Then, the simulation models are constructed on MATLAB/Simulink to validate the effectiveness of ALESO and CCC. Finally, a multi-point hybrid suspension experimental platform is built. Comparative experiments with PID and conventional LADRC demonstrate that the proposed ALADRC achieves faster response speed and effective system noise suppression. Additional comparisons with PID and ALADRC confirm that ALADRCC significantly reduces synchronization errors between adjacent suspension points, exhibiting superior global anti-interference performance. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

17 pages, 2509 KiB  
Article
High-Performance Speed Control of PMSM Using Fuzzy Sliding Mode with Load Torque Observer
by Ping Xin, Peilin Liu and Pingping Qu
Appl. Sci. 2025, 15(13), 7053; https://doi.org/10.3390/app15137053 - 23 Jun 2025
Viewed by 289
Abstract
To enhance the speed control performance of the permanent magnet synchronous motor (PMSM) servo system, an improved sliding mode control method integrating a torque observer is presented. The current loop uses current feedback decoupling PID control, and the speed loop applies sliding mode [...] Read more.
To enhance the speed control performance of the permanent magnet synchronous motor (PMSM) servo system, an improved sliding mode control method integrating a torque observer is presented. The current loop uses current feedback decoupling PID control, and the speed loop applies sliding mode control. In comparison to previous work in hybrid SMC using fuzzy logic and torque observers, this p proposes a hyperbolic tangent function in replacement of the signum function to solve the conflict between rapidity and chattering in the traditional exponential reaching law, and fuzzy and segmental self-tuning rules adjust relevant switching terms to reduce chattering and improve the sliding mode arrival process. A load torque observer is designed to enhance the system’s anti-interference ability by compensating the observed load torque to the current loop input. Simulation results show that compared with traditional sliding mode control with a load torque observer (SMC + LO), PID control with a load torque observer (PID + LO), and Active Disturbance Rejection Control (ADRC), the proposed strategy can track the desired speed in 0.032 s, has a dynamic deceleration of 2.7 r/min during sudden load increases, and has a recovery time of 0.011 s, while the others have relatively inferior performance. Finally, the model experiment is carried out, and the results of the experiment are basically consistent with the simulation results. Simulation and experimental results confirm the superiority of the proposed control strategy in improving the system’s comprehensive performance. Full article
(This article belongs to the Special Issue Power Electronics and Motor Control)
Show Figures

Figure 1

26 pages, 5946 KiB  
Article
Event-Triggered Fault-Tolerant ADRC for Variable-Load Quadrotor with Prescribed Performance
by Zhichen Li, Qiaoran Wang and Huaicheng Yan
Appl. Sci. 2025, 15(13), 7021; https://doi.org/10.3390/app15137021 - 22 Jun 2025
Viewed by 610
Abstract
This study proposes an event-triggered fault-tolerant active disturbance rejection control (ADRC) method for variable-load quadrotors with prescribed performance. The quadrotor, as a nonlinear and underactuated system, faces challenges such as payload variations, actuator faults, and external disturbances, which degrade trajectory tracking accuracy and [...] Read more.
This study proposes an event-triggered fault-tolerant active disturbance rejection control (ADRC) method for variable-load quadrotors with prescribed performance. The quadrotor, as a nonlinear and underactuated system, faces challenges such as payload variations, actuator faults, and external disturbances, which degrade trajectory tracking accuracy and stability. The proposed approach integrates a cascaded ADRC framework, decoupling the system into position and velocity subsystems, each equipped with extended state observers (ESOs) for real-time disturbance estimation and compensation. To enhance robustness, prescribed performance functions dynamically constrain tracking errors within predefined bounds, while event-triggered mechanisms reduce computational load through condition-based updates of control signals. Additionally, a particle swarm optimization (PSO) algorithm is employed for online parameter tuning, improving adaptability. Theoretical analysis confirms the system stability, and simulation results demonstrate the controller effectiveness in handling actuator faults and variable payloads, ensuring accurate trajectory tracking and reduced resource consumption. The method offers a promising solution for robust and efficient quadrotor control in complex environments. Full article
Show Figures

Figure 1

17 pages, 2712 KiB  
Article
Height Control and Experimental Study of Linear Motor-Based Active Suspension Systems
by Chao Jiang and Jialing Yao
Electronics 2025, 14(12), 2482; https://doi.org/10.3390/electronics14122482 - 18 Jun 2025
Viewed by 282
Abstract
This study addresses the challenge of ride height control in linear motor-based active suspension systems by proposing a control strategy based on linear active disturbance rejection control (LADRC). The effectiveness of the proposed approach is experimentally validated using a high-precision test platform built [...] Read more.
This study addresses the challenge of ride height control in linear motor-based active suspension systems by proposing a control strategy based on linear active disturbance rejection control (LADRC). The effectiveness of the proposed approach is experimentally validated using a high-precision test platform built on the NI cRIO-9014 real-time controller. The platform integrates a permanent magnet synchronous linear motor, a motor driver, acceleration sensors, and a vibration control system to realize closed-loop control of vehicle body height. Experimental results demonstrate that, compared with conventional PID control, LADRC achieves superior performance in height regulation accuracy, dynamic responsiveness, vertical acceleration suppression, and steady-state stability. In step response experiments, LADRC reduces the regulation time by 53.8% (from 1.3 s to 0.6 s) and lowers the steady-state error from 0.502 mm to 0.05 mm. In sinusoidal trajectory tracking tests, the LADRC approach reduces peak and RMS tracking errors by 81.5% and 80.3%, respectively. Moreover, under random road excitation, LADRC effectively attenuates high-frequency body vibrations, with reductions of 29.58% in peak vertical acceleration and 12.23% in RMS acceleration. Full article
Show Figures

Figure 1

18 pages, 5977 KiB  
Article
Attenuation of the First-Cycle Peak Response to an Impulse Disturbance
by Abasiodiong Jackson, Simon Fletcher and Andrew Longstaff
Vibration 2025, 8(2), 33; https://doi.org/10.3390/vibration8020033 - 17 Jun 2025
Viewed by 711
Abstract
Traditional control strategies for vibration suppression primarily focus on reducing settling time. However, this approach may not adequately address situations where the initial peak response of the vibration poses a risk of damage. This paper presents a novel application of active disturbance rejection [...] Read more.
Traditional control strategies for vibration suppression primarily focus on reducing settling time. However, this approach may not adequately address situations where the initial peak response of the vibration poses a risk of damage. This paper presents a novel application of active disturbance rejection control (ADRC) for attenuating the first-cycle peak response of free vibration in flexible structures. Inspired by the sudden impact scenario of particle accelerator collimators, a smart beam was designed to investigate the percentage first-cycle peak attenuation (FCPA) achievable by the disturbance estimation-based controller, in comparison with a classical proportional–differential (PD) controller. This study examined the limitations of the controller in mitigating initial deviations caused by real-world factors, such as delay and noise, through experimental methods. Results indicate that the PD controller achieves a maximum attenuation of 18%, while the ADRC achieves 30% attenuation. Improving the collocation configuration of the smart beam further improves the ADRC attenuation to 46.5%. Experimental data was used to fine-tune the system model in a sensitivity analysis to determine the delay within the system. Additionally, a new tuning parameter, α, representing the ratio of the observer bandwidth to controller bandwidth, was introduced to investigate the impact of observer and controller gain choices. System noise was amplified by 20 to 30 times, depending on the α value, although no significant effect on the control of the beam was observed. Full article
(This article belongs to the Special Issue Vibration in 2025)
Show Figures

Figure 1

Back to TopTop