Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = active filler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 866 KiB  
Article
Reuse of Activated Carbon Filter Waste as Filler in Vulcanized Rubber Composites
by Viviane Chaves de Souza, Henrique Pina Cardim, Carlos Toshiyuki Hiranobe, Guilherme Pina Cardim, Iago William Zapelini, Leonardo Lataro Paim, Gleyson Tadeu Almeida Santos, Silvio Rainho Teixeira, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Flávio Camargo Cabrera
J. Compos. Sci. 2025, 9(8), 406; https://doi.org/10.3390/jcs9080406 - 1 Aug 2025
Viewed by 157
Abstract
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as [...] Read more.
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as a reinforcing filler in vulcanized natural rubber composites. Samples were prepared with 5, 10, 15, and 20 phr (per hundred rubber) of residue and compared to unfilled natural rubber. Stress vs. strain tests reached 13.9 MPa of tension at rupture for composites containing 10 phr of carbon-activated residues, representing a 21.9% increase compared to natural rubber. Interestingly, the tension at rupture for NR/AC10phr reached values close to those of NR/CB5phr (with carbon black N330) attaining 14.4 MPa. These results indicate that, even at relatively low concentrations, the carbon filter can offer partial substitution for commercial fillers. Moreover, the use of activated carbon from filter cartridges as filler in rubber composites provides an environmentally favorable alternative to energy-intensive regeneration processes for activated carbon. Full article
Show Figures

Figure 1

19 pages, 4297 KiB  
Article
Bioactivity of Glass Carbomer Versus Conventional GICs in Sound Enamel and Dentine: A 12-Month SEM-EDS Study
by Dubravka Turjanski, Suzana Jakovljević, Dragutin Lisjak, Petra Bučević Sojčić, Fran Glavina, Kristina Goršeta and Domagoj Glavina
Materials 2025, 18(15), 3580; https://doi.org/10.3390/ma18153580 - 30 Jul 2025
Viewed by 157
Abstract
Glass ionomer cements (GICs) are bioactive restorative materials valued for their sustained ion release and remineralisation capacity. However, their long-term interactions with sound enamel and dentine remain underexplored. This 12-month in vitro study aimed to evaluate microstructural and compositional changes in sound dental [...] Read more.
Glass ionomer cements (GICs) are bioactive restorative materials valued for their sustained ion release and remineralisation capacity. However, their long-term interactions with sound enamel and dentine remain underexplored. This 12-month in vitro study aimed to evaluate microstructural and compositional changes in sound dental tissues adjacent to four GICs—Ketac Universal, Fuji IX and Equia Forte Fil (conventional GICs) and the advanced Glass Carbomer (incorporating hydroxyapatite nanoparticles)—using field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Glass Carbomer uniquely formed hydroxyapatite nanoparticles and mineralised regions indicative of active biomineralisation—features not observed with conventional GICs. It also demonstrated greater fluoride uptake into dentine and higher silicon incorporation in both enamel and dentine. Conventional GICs exhibited filler particle dissolution and mineral deposition within the matrix over time; among them, Equia Forte released the most fluoride while Fuji IX released the most strontium. Notably, ion uptake was consistently higher in dentine than in enamel for all materials. These findings indicate that Glass Carbomer possesses superior bioactivity and mineralising potential which may contribute to the reinforcement of sound dental tissues and the prevention of demineralisation. However, further in vivo studies are required to confirm these effects under physiological conditions. Full article
(This article belongs to the Special Issue Antibacterial Dental Materials)
Show Figures

Graphical abstract

15 pages, 2645 KiB  
Article
Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA)
by Quddus Tushar, Muhammed A. Bhuiyan, Ziyad Abunada, Charles Lemckert and Filippo Giustozzi
C 2025, 11(3), 55; https://doi.org/10.3390/c11030055 - 28 Jul 2025
Viewed by 698
Abstract
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2 [...] Read more.
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2SiO3), superplasticizer, and others, are assessed to reflect the actual scenarios of the carbon footprint. The conjugate application of the life cycle assessment (LCA) tool SimPro 9.4 and @RISK Monte Carlo simulation justifies the variations in carbon emissions rather than a specific determined value for concrete binders, precursors, and filler materials. A reduction of 43% in carbon emissions has been observed by replacing cement with alkali-activated binders. However, the associative uncertainties of chemical admixtures reveal that even a slight increase may cause significant environmental damage rather than its benefit. Pearson correlations of carbon footprint with three admixtures, namely sodium silicate (r = 0.80), sodium hydroxide (r = 0.52), and superplasticizer (r = 0.19), indicate that the shift from cement to alkaline activation needs additional precaution for excessive use. Therefore, a suitable method of manufacturing chemical activators utilizing renewable energy sources may ensure long-term sustainability. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

20 pages, 3903 KiB  
Article
High-Performance Barium Titanate, Carbon Nanotube, and Styrene–Butadiene Rubber-Based Single Composite TENG for Energy Harvesting and Handwriting Recognition
by Md Najib Alam, Vineet Kumar, Youjung Kim, Dong-Joo Lee and Sang-Shin Park
Polymers 2025, 17(15), 2016; https://doi.org/10.3390/polym17152016 - 23 Jul 2025
Viewed by 274
Abstract
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. [...] Read more.
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. The energy harvesting efficiency depends on the type and amount of fillers, as well as their dispersion within the matrix. Stearic acid modification of BT enables near-nanoscale filler distribution, resulting in high energy conversion efficiencies. The composite achieved power efficiency, power density, charge efficiency, and charge density values of 1.127 nW/N, 8.258 mW/m3, 0.146 nC/N, and 1.072 mC/m3, respectively, under only 2% cyclic compressive strain at 0.85 Hz. The material performs better at low stress–strain ranges, exhibiting higher charge efficiency. The generated charge in the TENG composite is well correlated with the compressive stress, which provides a minimum activation pressure of 0.144 kPa, making it suitable for low-pressure sensing applications. A flat composite with dimensions of 0.02 × 6 × 5 cm3 can produce a power density of 26.04 W/m3, a charge density of 0.205 mC/m3, and an output voltage of 10 V from a single hand pat. The rubber composite also demonstrates high accuracy in handwriting recognition across different individuals, with clear differences in sensitivity curves. Repeated attempts by the same person show minimal deviation (<5%) in writing time. Additionally, the presence of reinforcing fillers enhances mechanical strength and durability, making the composite suitable for long-term cyclic energy harvesting and wearable sensor applications. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3399 KiB  
Article
Relationship Between Filler Type, Thermomechanical Properties, and Aging of RTV Silicone Foams
by Xavier M. Torres, John R. Stockdale, Adam Pacheco, Shelbie A. Legett, Lindsey B. Bezek, Bart Benedikt, Andrea Labouriau and Santosh Adhikari
Polymers 2025, 17(14), 1998; https://doi.org/10.3390/polym17141998 - 21 Jul 2025
Viewed by 325
Abstract
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence [...] Read more.
Room-temperature vulcanizing (RTV) silicone foams are used in many industrial applications that require the material to perform over long time periods. However, mechanical properties tend to deteriorate when these foams age under a compressive load. The chemical aging is attributed to the presence of unreacted functional groups of the prepolymers, residues from acid, and catalytically active tin (II) species. Here, an optimized thermal treatment of an RTV foam that achieves completion of curing reactions and deactivation of reactive species is proposed. Foams that were thermally aged for three months under compressive load showed no signs of compression set, indicative of the effectiveness of the implemented post-curing approach. In addition, the effects of fillers (diatomaceous earth, fumed silica, and carbon nanofibers) on thermomechanical properties were investigated. Tensile strength, tear strength, and thermal conductivity increased when these fillers were added to the unfilled RTV formulation, with carbon nanofibers (CNFs) being the most effective filler. Rheological studies of RTV formulations indicated that 2.5 wt.% of CNFs is the upper limit that can be added to the RTV formulation. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Figure 1

25 pages, 2929 KiB  
Article
Modified Water-Dispersion Compositions Based on Synthesized Dispersions and Hollow Glass Microspheres with Improved Protective Characteristics
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Ruslan E. Nurlybayev, Zaure N. Altayeva, Yelzhan S. Orynbekov, Axaya S. Yestemessova, Aktota A. Murzagulova, Alinur A. Iskakov, Aidos A. Joldassov and Zhanar O. Zhumadilova
Coatings 2025, 15(7), 840; https://doi.org/10.3390/coatings15070840 - 18 Jul 2025
Viewed by 376
Abstract
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics [...] Read more.
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics proves to be effective. This article examines the development of a paint-and-coating composition using hollow glass microspheres and modified diatomite as finely dispersed fillers. The influence of technological factors on the properties of coating materials based on a synthesized acrylic dispersion and fillers—such as modified diatomite and hollow glass microspheres ranging from 20 to 100 μm in size with a bulk density of 0.107–0.252 g/cm3—is analyzed. The optimal formulation of the coating materials was determined to ensure the required coating quality. Experimental results demonstrate the improved strength and hardness of the coating due to the use of acrylic dispersion obtained through an emulsifier-free method and modifiers in the form of finely dispersed fillers. It has been established that the resulting samples also exhibit high adhesion to mineral and metallic substrates, along with excellent corrosion resistance. Moreover, the incorporation of acrylic dispersion contributes to increased elasticity of the coating, resulting in improved resistance to washing and abrasion. The developed protective material can be applied to a variety of surfaces, including walls, ceilings, and roofs of buildings and structures, pipelines, and many other applications. Thus, modified water-dispersion compositions based on synthesized acrylic dispersion showed the following results: resistance to sticking—5, which is the best; chemical resistance and gloss level with standard single-phase acrylic dispersion—no destruction or change in gloss. The adhesion of coatings cured under natural conditions and under the influence of UV radiation was 1 point. The developed formulations for obtaining water-dispersion paint and varnish compositions based on synthesized polymer dispersions, activated diatomite, and hollow glass microspheres, meet all the regulatory requirements for paint and varnish materials in terms of performance, and in terms of economic indicators, the cost of 1 kg of paint is 30% lower than the standard. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

19 pages, 2897 KiB  
Article
Noncovalently Immobilized Glucose Oxidase/Horseradish Peroxidase Cascade on Polyamide Supports for Eco-Friendly Polyaniline Synthesis
by Nadya V. Dencheva, Joana F. Braz, Sofia A. Guimarães and Zlatan Z. Denchev
Molecules 2025, 30(14), 3003; https://doi.org/10.3390/molecules30143003 - 17 Jul 2025
Viewed by 298
Abstract
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in [...] Read more.
This study discloses the noncovalent immobilization of a bienzyme cascade composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto magnetically responsive polyamide microparticles (PA MPs). Porous PA6, PA4, and PA12 MPs containing iron fillers were synthesized via activated anionic ring-opening polymerization in suspension, alongside neat PA6 MPs used as a reference. Four hybrid catalytic systems (GOx/HRP@PA) were prepared through sequential adsorption of HRP and GOx onto the various PA MP supports. The initial morphologies of the supports and the hybrid biocatalysts were characterized by SEM, followed by evaluation of the catalytic performance using a two-step glucose oxidation cascade process. Among all systems, the GOx/HRP@PA4-Fe complex exhibited the highest activity, being approximately 1.5 times greater than the native enzyme dyad, followed by the PA6-supported system with slightly inferior performance. All systems obeyed Michaelis–Menten kinetics, with the immobilized cascades displaying higher Kₘ and Vₘₐₓ values than the non-immobilized enzyme pair while maintaining comparable catalytic efficiencies, CE (CE = kcat/Kₘ). Subsequently, the immobilized and native enzyme systems were employed for the polymerization of aniline. According to UV–VIS, complete monomer conversion was achieved within 24 h for selected catalysts, and FTIR analysis confirmed the formation of polyaniline in the emeraldine base form without the use of template molecules. These findings highlight the potential of Fe-containing polyamide microparticles as efficient supports for the sustainable, enzyme-mediated synthesis of intrinsically conductive aromatic polymers. Full article
Show Figures

Graphical abstract

23 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 290
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

19 pages, 1241 KiB  
Article
ThermalInsulation Dry Construction Mixture Based on Diatomite
by Ruslan E. Nurlybayev, Erzhan I. Kuldeyev, Axaya S. Yestemessova, Zaure N. Altayeva, Yelzhan S. Orynbekov, Aktota A. Murzagulova, Alinur A. Iskakov, Gaukhar K. Abisheva and Yerlan Y. Khamza
Coatings 2025, 15(7), 811; https://doi.org/10.3390/coatings15070811 - 11 Jul 2025
Viewed by 387
Abstract
In the context of intensified construction and stricter requirements for the energy efficiency of buildings, the use of thermal insulation materials and technologies is becoming particularly important. One promising area in this field is the use of thermal insulation mixtures, which are versatile, [...] Read more.
In the context of intensified construction and stricter requirements for the energy efficiency of buildings, the use of thermal insulation materials and technologies is becoming particularly important. One promising area in this field is the use of thermal insulation mixtures, which are versatile, adaptable, and highly reliable in operation. Mixtures based on fillers with a porous structure and materials that impart thermal insulation properties, which provide higher thermal insulation properties, are of great interest. However, the development of dry thermal insulation mixtures is hampered by insufficient study of their physical, mechanical, and operational characteristics. This article presents the results of research work on the development and study of dry building thermal insulation mixtures. A distinctive feature of the work is the creation of a composition of dry building thermal insulation mixtures based on local raw materials, such as diatomite, its thermal modification at a temperature of 900 °C, the use of expanded perlite sand, lime, and Portland cement. Research into the properties of modified diatomite has shown that its surface after thermal treatment differs from the surface of unburned diatomite in that it becomes more active and has a 3–4 times higher increase in strength. Modified diatomite and expanded perlite sand have low thermal conductivity, and this property was used in the creation of building thermal insulation mixtures, which was confirmed by research, as the thermal conductivity coefficient ranged from 0.128 to 0.152 W/m °C. The developed dry thermal insulation lime–cement mixture is intended for both interior and exterior finishing works, which is confirmed by the results obtained for determining the frost resistance of the solution and the frost resistance of the contact zone, and corresponds to the F35 grade and has a strength of up to 3.59 MPa. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 368
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 622
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

20 pages, 5017 KiB  
Article
Poly-L-Lactic Acid Filler Increases Adipogenesis and Adiponectin in Aged Subcutaneous Tissue
by Seyeon Oh, Nala Shin, Sang Ju Lee, Kuk Hui Son and Kyunghee Byun
Polymers 2025, 17(13), 1826; https://doi.org/10.3390/polym17131826 - 30 Jun 2025
Viewed by 550
Abstract
Poly-L-lactic acid (PLLA) filler, which increases volume and collagen synthesis, is used for skin rejuvenation. Subcutaneous adipose tissue (SAT) contains precursors that differentiate into mature adipocytes that secrete adiponectin, which modulates SAT function and increases adipogenesis. During aging, adiponectin and precursor cell functions [...] Read more.
Poly-L-lactic acid (PLLA) filler, which increases volume and collagen synthesis, is used for skin rejuvenation. Subcutaneous adipose tissue (SAT) contains precursors that differentiate into mature adipocytes that secrete adiponectin, which modulates SAT function and increases adipogenesis. During aging, adiponectin and precursor cell functions decrease, reducing adipogenesis and facial volume. Adiponectin also increases collagen synthesis by stimulating fibroblasts. After hydrogen peroxide treatment to induce senescent adipocytes (3T3-L1) and aged skin, follow-up PLLA treatment increased adipogenesis by stimulating the nuclear factor erythroid-2-related factor 2 (NRF2)/peroxisome proliferator-activated receptor gamma (PPARγ)/CCAAT/enhancer binding protein alpha (C/EBPα) pathway. This resulted in increased adiponectin secretion, which promoted collagen synthesis and mitigated the loss of SAT volume. In the senescent adipocyte, PLLA increased NRF2/PPARγ/C/EBPα, adipogenesis factors (fatty acid binding protein 4, lipoprotein lipase, and cluster of differentiation 36), lipogenesis factors (ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase), adiponectin, and lipid droplet size. Treatment of senescent fibroblasts with conditioned medium from PLLA-treated adipocytes increased collagen1 and 3 and decreased matrix metalloproteinase1 and 3 expressions. Similarly, PLLA increased NRF2/PPARγ/C/EBPα, adipogenesis, and lipogenesis factors in aged mouse SAT. Also, PLLA increased adiponectin and adipocyte numbers without hypertrophy and increased collagen accumulation and dermal thickness. In summary, PLLA increased adipogenesis and adiponectin, which increased the volume of SAT and collagen synthesis, thereby rejuvenating aged skin. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

23 pages, 3371 KiB  
Article
Life Cycle Assessment and Performance Evaluation of Self-Compacting Concrete Incorporating Waste Marble Powder and Aggregates
by Masoud Ahmadi, Erfan Abdollahzadeh, Mohammad Kashfi, Behnoosh Khataei and Marzie Razavi
Materials 2025, 18(13), 2982; https://doi.org/10.3390/ma18132982 - 24 Jun 2025
Viewed by 495
Abstract
This study systematically investigates the utilization of marble industry waste—waste marble powder (WMP) as partial cement replacement and waste marble aggregates (WMA) as partial fine aggregate replacement—in self-compacting concrete (SCC). A detailed experimental program evaluated the effects of various replacement levels (5%, 10%, [...] Read more.
This study systematically investigates the utilization of marble industry waste—waste marble powder (WMP) as partial cement replacement and waste marble aggregates (WMA) as partial fine aggregate replacement—in self-compacting concrete (SCC). A detailed experimental program evaluated the effects of various replacement levels (5%, 10%, and 20% for WMP; 20%, 30%, and 40% for WMA) on compressive strength and durability, particularly resistance to aggressive sulfuric acid environments. Results indicated that a 5% WMP replacement increased compressive strength by 4.9%, attributed primarily to the filler effect, whereas higher levels (10–20%) led to strength reductions due to limited pozzolanic activity and cement dilution. In contrast, WMA replacement consistently enhanced strength (maximum increase of 11.5% at 30% substitution) due to improved particle packing and aggregate-paste interface densification. Durability tests revealed significantly reduced compressive strength losses and mass loss in marble-containing mixtures compared to control samples, with optimal acid resistance observed at 20% WMP and 40% WMA replacements. A comprehensive life cycle assessment demonstrated notable reductions in environmental impacts, including up to 20% decreases in Global Warming Potential (GWP) at 20% WMP replacement. A desirability-based eco-cost-mechanical optimization—simultaneously integrating mechanical strength, environmental indicators, and production cost—identified the 10% WMP substitution mix as the most sustainable option, achieving optimal balance among key performance criteria. These findings underscore the significant potential for marble waste reuse in SCC, promoting environmental sustainability, resource efficiency, and improved concrete durability in chemically aggressive environments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2992 KiB  
Article
The Influence of Concentration and Type of Salts on the Behaviour of Linear Actuators Based on PVA Hydrogel Activated by AC Power
by Aleksey Maksimkin, Mikhail Zadorozhnyy, Kseniia V. Filippova, Lidiia D. Iudina, Dmitry V. Telyshev and Tarek Dayyoub
Gels 2025, 11(7), 484; https://doi.org/10.3390/gels11070484 - 23 Jun 2025
Viewed by 910
Abstract
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. [...] Read more.
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. However, several important questions arise about how the type of salt chosen and its concentration will affect not only the activation efficiency of the actuators but also the structure of the hydrogels utilized. In this study, to enhance the electrical conductivity of the hydrogel and lower the necessary activation voltage of the hydrogel actuators, lithium chloride (LiCl) and sodium chloride (NaCl) were incorporated as conductive fillers into the polyvinyl alcohol (PVA) polymer matrix. To determine the deformation of actuators, as well as the activation and relaxation times and efficiencies during activation, linear actuators capable of being activated through extension/contraction (swelling/shrinking) cycles were developed and examined based on the LiCl/NaCl content, applied voltage, and frequency. The main finding is that the required actuating voltage was lowered by up to 20 V by adding an equal mass of salt in relation to the PVA mass content. With a load of around 20 kPa, it was observed that the extension deformation for PVA/NaCl-based actuators can achieve 75%, while in contraction deformation, can reach 17%. Additionally, for the PVA/LiCl-based actuators, the extension deformation can reach 87%, while during contraction deformation, it can reach 22%. The degree of swelling in the PVA/NaCl hydrogels was generally less than that in the PVA/LiCl hydrogels, which was associated with the finding that the actuators prepared from PVA/NaCl hydrogels delivered an output that was 10–15% lower than those made from PVA/LiCl hydrogels across different testing cycles. Furthermore, adding salt increases the degree of crosslinking, which can explain why increased crosslinking leads to reduced deformation when exposed to AC voltage. These actuators can find extensive use in soft robotics, artificial muscles, medical applications, and aerospace industries. Full article
Show Figures

Figure 1

23 pages, 5078 KiB  
Article
Mitigation of Volume Changes of Alkali-Activated Materials by Using Limestone Filler
by Maïté Lacante, Brice Delsaute and Stéphanie Staquet
Materials 2025, 18(13), 2963; https://doi.org/10.3390/ma18132963 - 23 Jun 2025
Cited by 1 | Viewed by 315
Abstract
As autogenous and thermal strains are significantly high in alkali-activated pastes, it becomes necessary to investigate ways to reduce these. This research studies how the volume changes of pastes made from slag activated by alkalis can be mitigated by substituting part of the [...] Read more.
As autogenous and thermal strains are significantly high in alkali-activated pastes, it becomes necessary to investigate ways to reduce these. This research studies how the volume changes of pastes made from slag activated by alkalis can be mitigated by substituting part of the slag with limestone filler and how this impacts the properties of the material, including autogenous strains, thermal strains, heat flow, compressive strength, and workability. The first part investigates how the different substitution rates impact the compressive strength and workability. The substitution rates of 15% and 30% emerged as the most optimal with a maximal reduction in the compressive strength of 23%. Five compositions were consequently investigated in the second part of the study. Isothermal calorimetry revealed that the limestone filler was probably not entirely inert and showed the effect of dilution, which is linked to the increase in the solution-to-binder ratio when the substitution rate increases. The autogenous shrinkage decreased when substituting 15% of the slag, while higher autogenous shrinkage was obtained when 30% was substituted. In addition, its rate of development was reduced. Finally, the coefficient of thermal expansion was generally slightly reduced and delayed when slag was substituted. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop