sustainability-logo

Journal Browser

Journal Browser

Novel and Scalable Technologies for Sustainable Waste Management

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Waste and Recycling".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 672

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Chemical Engineering, Process and Environmental Technology, KU Leuven, 3000 Leuven, Belgium
2. Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Interests: renewable energy; sustainable engineering; chemical reactors; unit operations; powder technology; environmental technologies; waste treatment; impact assessments
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

“Few would disagree that one of the most urgent societal challenges, we face today is addressing the risks of climate change. How we meet the world’s demand for resources and energy necessary for economic growth while mitigating the long-term impact on our environment is key to our sustainable future” (D.W. Woods, Chairman of Exxon).

Developing novel and scalable technologies is critical to achieving the goals of the COP agreements. To that end, scientists and industrialists should be working to develop breakthrough solutions in emission reductions and resource conservation and management. Natural resource management requires integrative thinking and problem-solving that synthesizes ecological, economic, and social effects.

The world must move toward a more sustainable future with special emphasis on resources, clean products, and reduced energy consumption. The development of technologies that facilitate this target for chemical synthesis, minerals processing, heating, power generation, and the recycling of waste products is crucial. Within these objectives, a reduction in the global carbon footprint is essential. The carbon footprint is the total amount of greenhouse gasses that are generated or abated by our actions.

This Special Issue encourages submission of papers on any aspect of these target developments, hence on any scale of development from the laboratory to commercial applications.

Papers on technology development and improvement, process integration, and standards and regulation are within the scope of this Special Issue, as are case studies. Understanding the cycle of material and energy flows in processes is a very significant part of trying to achieve sustainability.

The following topics will be specifically addressed in this Special Issue:

  • Novel waste water treatment toward zero-discharge;
  • Waste minimization and disposal;
  • Particle technology in chemical synthesis or energy processes;
  • Hydrogen production;
  • Process intensification and “green” chemical engineering;
  • Testing, validation, and monitoring;
  • Simulations of “green” production processes.

Papers that incorporate more than one of these topics are encouraged.

Prof. Dr. Jan Baeyens
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • waste management
  • wastewater treatment
  • waste minimization
  • waste disposal
  • particle technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 4660 KiB  
Article
CO Emission Prediction Based on Kernel Feature Space Semi-Supervised Concept Drift Detection in Municipal Solid Waste Incineration Process
by Runyu Zhang, Jian Tang and Tianzheng Wang
Sustainability 2025, 17(13), 5672; https://doi.org/10.3390/su17135672 - 20 Jun 2025
Viewed by 185
Abstract
Carbon monoxide (CO) is a toxic pollutant emitted by municipal solid waste incineration (MSWI), which has a strong correlation with dioxins. In terms of the sustainable development of an ecological environment, CO emission concentration is strictly controlled by the environmental departments of various [...] Read more.
Carbon monoxide (CO) is a toxic pollutant emitted by municipal solid waste incineration (MSWI), which has a strong correlation with dioxins. In terms of the sustainable development of an ecological environment, CO emission concentration is strictly controlled by the environmental departments of various countries in the world. The construction of its prediction model is conducive to pollution reduction control. The MSWI process is affected by multi-factors such as MSW component fluctuation, equipment wear and maintenance, and seasonal change, and has complex nonlinear and time-varying characteristics, which makes it difficult for the CO prediction model based on offline historical data to adapt to the above changes. In addition, the continuous emission monitoring system (CEMS) used for conventional pollutant detection has unavoidable misalignment and failure problems. In this article, a novel prediction model of CO emission from the MSWI process based on semi-supervised concept drift (CD) detection in kernel feature space is proposed. Firstly, the CO emission deep prediction model and the kernel feature space detection model are constructed based on offline batched historical data, and the historical data set for the real-time construction of the pseudo-labeling model is obtained. Secondly, the drift detection for the CO emission prediction model is carried out based on real-time data by using unsupervised kernel principal component analysis (KPCA) in terms of feature space. If CD occurs, the pseudo-label model is constructed, the pseudo-truth value is obtained, and the drift sample is confirmed and selected based on the Page–Hinkley (PH) test. If no CD occurs, the CO emission concentration is predicted based on the historical prediction model. Then, the updated data set of the CO emission prediction model and kernel feature space detection is obtained by combining historical samples and drift samples. Finally, the offline history model is updated with a new data set when the preset conditions are met. Based on the real data set of an MSWI power plant in Beijing, the validity of the proposed method is verified. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

31 pages, 4703 KiB  
Article
Governance-Centred Industrial Symbiosis for Circular Economy Transitions: A Rural Forest Biomass Hub Framework Proposal
by Joel Joaquim de Santana Filho, Pedro Dinis Gaspar, Arminda do Paço and Sara M. Marcelino
Sustainability 2025, 17(12), 5659; https://doi.org/10.3390/su17125659 - 19 Jun 2025
Viewed by 153
Abstract
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a [...] Read more.
This study examines the establishment of a Hub for Circular Economy and Industrial Symbiosis (HUB-CEIS) centred on a forest biomass waste plant in Fundão, Portugal, presenting an innovative model for rural industrial symbiosis, circular economy governance, and sustainable waste management. Designed as a strategic node within a reverse supply chain, the hub facilitates the conversion of solid waste into renewable energy and high-value co-products, including green hydrogen, tailored for industrial and agricultural applications, with an estimated 120 ktCO2/year reduction and 60 direct jobs. Aligned with the United Nations (UN) Sustainable Development Goals (SDGs) and the Paris Agreement, this initiative addresses global challenges such as decarbonization, resource efficiency, and the energy transition. Employing a mixed research methodology, this study integrates a comprehensive literature review, in-depth stakeholder interviews, and comparative case study analysis to formulate a governance framework fostering regional partnerships between industry, government, and local communities. The findings highlight Fundão’s potential to become a benchmark for rural industrial symbiosis, offering a replicable model for circularity in non-urban contexts, with a projected investment of USD 60 M. Special emphasis is placed on the green hydrogen value chain, positioning it as a key enabler for regional sustainability. This research underscores the importance of cross-sectoral collaboration in achieving scalable and efficient waste recovery processes. By delivering practical insights and a robust governance structure, the study contributes to the circular economy literature, providing actionable strategies for implementing rural reverse supply chains. Beyond validating waste valorization and renewable energy production, the proposed hub establishes a blueprint for sustainable rural industrial development, promoting long-term industrial symbiosis integration. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

Back to TopTop