Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,450)

Search Parameters:
Keywords = acoustic control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 17057 KiB  
Article
Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity
by Pankaj Kumar, Ebrahim Kadivar and Ould el Moctar
J. Mar. Sci. Eng. 2025, 13(8), 1517; https://doi.org/10.3390/jmse13081517 - 6 Aug 2025
Abstract
This study examines the hydrodynamic and acoustic performance of plain NACA0018 hydrofoil and modified NACA0018 hydrofoils (foil with a cavity on suction surface) at a Reynolds number (Re) of 40,000, which is indicative of small-scale turbines and [...] Read more.
This study examines the hydrodynamic and acoustic performance of plain NACA0018 hydrofoil and modified NACA0018 hydrofoils (foil with a cavity on suction surface) at a Reynolds number (Re) of 40,000, which is indicative of small-scale turbines and marine applications. A cavity was created on suction side surface at 40–50% of the chord length, which is chosen for its efficacy in cavitation control. The present analysis examines the impact of the cavity on lift-to-drag-ratio (L/D) and cavity length at three cavitation numbers (1.7, 1.2, and 0.93) for plain and modified hydrofoils. Simulations demonstrate a significant enhancement of 7% in the lift-to-drag ratio relative to traditional designed foils. Contrary to earlier observations, the cavity length increases instead of decreasing for the modified hydrofoil. Both periodic steady and turbulent inflow conditions are captured that simulate the complex cavity dynamics and flow–acoustic interactions. It is found that a reduction in RMS velocity with modified blade suggests flow stabilization. Spectral analysis using Mel-frequency techniques confirms the cavity’s potential to reduce low-frequency flow-induced noise. These findings offer new insights for designing quieter and more efficient hydrofoils and turbine blades. Full article
(This article belongs to the Section Ocean Engineering)
21 pages, 1209 KiB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Efficient Particle Aggregation Through SSAW Phase Modulation
by Yiming Li, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu and Dongfang Liang
Micromachines 2025, 16(8), 910; https://doi.org/10.3390/mi16080910 (registering DOI) - 5 Aug 2025
Abstract
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and [...] Read more.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel. By fully exploiting the degrees of freedom offered by two pairs of interdigital transducers (IDTs) on each substrate, the system enables highly flexible control of microparticles. To explore its capability on particle aggregation, we developed a two-dimensional numerical model to investigate the influence of the SAW phase modulation on the established acoustic fields within the microchannel. Single-particle motion was first examined under the influence of the phase-modulated acoustic fields to form a reference for identifying effective phase modulation strategies. Key parameters, such as the phase changes and the duration of each phase modulation step, were determined to maximize the lateral motion while minimizing undesired vertical motion of the particle. Our dual-sided SSAW configuration, combined with novel dynamic phase modulation strategy, leads to rapid and precise aggregation of microparticles towards a single focal point. This study sheds new light on the design of acoustofluidic devices for efficient spatiotemporal particle concentration. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices, 2nd Edition)
Show Figures

Figure 1

22 pages, 3273 KiB  
Article
Virtual Acoustic Environment Rehearsal and Performance in an Unknown Venue
by Charlotte Fernandez, Martin S. Lawless, David Poirier-Quinot and Brian F. G. Katz
Virtual Worlds 2025, 4(3), 35; https://doi.org/10.3390/virtualworlds4030035 - 1 Aug 2025
Viewed by 189
Abstract
Due to the effect of room acoustics on musical interpretation, a musician’s rehearsal may be greatly enhanced by leveraging virtual and augmented reality technology. This paper presents a preliminary study on a rehearsal tool designed for musicians, enabling practice in a virtual acoustic [...] Read more.
Due to the effect of room acoustics on musical interpretation, a musician’s rehearsal may be greatly enhanced by leveraging virtual and augmented reality technology. This paper presents a preliminary study on a rehearsal tool designed for musicians, enabling practice in a virtual acoustic environment with audience-positioned playback. Fourteen participants, both professional and non-professional musicians, were recruited to practice with the rehearsal tool prior to performing in an unfamiliar venue. Throughout the rehearsal, the subjects either played in a virtual environment that matched the acoustics of the performance venue or one that was acoustically different. A control group rehearsed in an acoustically dry room with no virtual acoustic environment. The tool’s effectiveness was evaluated with two 16-item questionnaires that assessed quality, usefulness, satisfaction with the rehearsal, and aspects of the performance. Findings indicate that rehearsing in a virtual acoustic environment that matches the performance venue improves acoustic awareness during the performance and enhances ease and comfort on stage compared to practising in a different environment. These results support the integration of virtual acoustics in rehearsal tools to help musicians better adapt their performance to concert settings. Full article
Show Figures

Figure 1

20 pages, 25581 KiB  
Article
Phase Synchronisation for Tonal Noise Reduction in a Multi-Rotor UAV
by Burak Buda Turhan, Djamel Rezgui and Mahdi Azarpeyvand
Drones 2025, 9(8), 544; https://doi.org/10.3390/drones9080544 - 1 Aug 2025
Viewed by 202
Abstract
This study aims to investigate the effects of phase synchronisation on tonal noise reduction in a multi-rotor UAV using an electronic phase-locking system. Experiments at the University of Bristol explored the impact of relative phase angle, propeller spacing, and blade geometry on acoustic [...] Read more.
This study aims to investigate the effects of phase synchronisation on tonal noise reduction in a multi-rotor UAV using an electronic phase-locking system. Experiments at the University of Bristol explored the impact of relative phase angle, propeller spacing, and blade geometry on acoustic performance, including psychoacoustic annoyance. Results show that increasing the phase angle consistently reduces the sound pressure level (SPL) due to destructive interference. For the two-bladed configuration, the highest noise reduction occurred at relative phase angle Δψ=90, with a 19 dB decrease at the first blade-passing frequency (BPF). Propeller spacing had minimal impact when phase synchronisation was applied. The pitch-to-diameter (P/D) ratio also influenced results: for P/D=0.55, reductions ranged from 13–18 dB; and for P/D=1.0, reductions ranged from 10–20 dB. Maximum psychoacoustic annoyance was observed when propellers were in phase (Δψ=0), while annoyance decreased with increasing phase angle, confirming the effectiveness of phase control for noise mitigation. For the five-bladed configuration, the highest reduction of 15 dB occurred at Δψ=36, with annoyance levels also decreasing with phase offset. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

23 pages, 7315 KiB  
Article
Nonlinear Narrowband Active Noise Control for Tractors Based on a Momentum-Enhanced Volterra Filter
by Tao Zhang, Zhixuan Guan, Shuai Zhang, Kai Song and Boyan Huang
Agriculture 2025, 15(15), 1655; https://doi.org/10.3390/agriculture15151655 - 1 Aug 2025
Viewed by 213
Abstract
Nonlinear narrowband low-frequency noise generated during tractors’ operation significantly affects operators’ comfort and working efficiency. Traditional linear active noise control algorithms often struggle to effectively suppress such complex acoustic disturbances. To address this challenge, this paper proposes a momentum-enhanced Volterra filter-based active noise [...] Read more.
Nonlinear narrowband low-frequency noise generated during tractors’ operation significantly affects operators’ comfort and working efficiency. Traditional linear active noise control algorithms often struggle to effectively suppress such complex acoustic disturbances. To address this challenge, this paper proposes a momentum-enhanced Volterra filter-based active noise control (ANC) algorithm that improves both the modeling capability of nonlinear acoustic paths and the convergence performance of the system. The proposed approach integrates the nonlinear representation power of the Volterra filter with a momentum optimization mechanism to enhance convergence speed while maintaining robust steady-state accuracy. Simulations are conducted under second- and third-order nonlinear primary paths, followed by performance validation using multi-tone signals and real in-cabin tractor noise recordings. The results demonstrate that the proposed algorithm achieves superior performance, reducing the NMSE to approximately −35 dB and attenuating residual noise energy by 3–5 dB in the 200–800 Hz range, compared to FXLMS and VFXLMS algorithms. The findings highlight the algorithm’s potential for practical implementation in nonlinear and narrowband active noise control scenarios within complex mechanical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 2055 KiB  
Article
Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation
by Jing Wang, Yumeng Sun, Yongfu Wang, Ying Li and Xiaojiao Gu
Materials 2025, 18(15), 3616; https://doi.org/10.3390/ma18153616 - 31 Jul 2025
Viewed by 211
Abstract
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, [...] Read more.
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, enabling outstanding sound-insulation performance within a deep-subwavelength thickness. Finite-element and transfer-matrix analyses show that increasing the fractal order from one to three raises the number of bandgaps from three to five and expands total stop-band coverage from 17% to over 40% within a deep-subwavelength thickness. Four-microphone impedance-tube measurements on the third-order sample validate a peak transmission loss of 75 dB at 495 Hz, in excellent agreement with simulations. Compared to conventional zigzag and Hilbert-maze designs, this curve fractal architecture delivers enhanced low-frequency broadband insulation, structural lightweighting, and ease of fabrication, making it a promising solution for noise control in machine rooms, ducting systems, and traffic environments. The method proposed in this paper can be applied to noise reduction of transmission parts for ceramic automation production. Full article
Show Figures

Figure 1

18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 - 31 Jul 2025
Viewed by 167
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

18 pages, 5328 KiB  
Article
Theoretical and Experimental Investigation of Dynamic Characteristics in Propulsion Shafting Support System with Integrated Squeeze Film Damper
by Qilin Liu, Wu Ouyang, Gao Wan and Gaohui Xiao
Lubricants 2025, 13(8), 335; https://doi.org/10.3390/lubricants13080335 - 30 Jul 2025
Viewed by 156
Abstract
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study [...] Read more.
The lateral vibration of propulsion shafting is a critical factor affecting the acoustic stealth performance of underwater vehicles. As the main vibration isolation component in transmitting vibrational energy, the damping efficiency of the propulsion shafting support system (PSSS) holds particular significance. This study investigates the dynamic characteristics of the PSSS with the integral squeeze film damper (ISFD). A dynamic model of ISFD–PSSS is developed to systematically analyze the effects of shaft speed and external load on its dynamic behavior. Three test bearings (conventional, 1S, and 3S structure) are designed and manufactured to study the influence of damping structure layout scheme, damping fluid viscosity, unbalanced load, and shaft speed on the vibration reduction ability of ISFD–PSSS through axis orbit and vibration velocity. The results show that the damping effects of ISFD–PSSS are observed across all test conditions, presenting distinct nonlinear patterns. Suppression effectiveness is more pronounced in the vertical direction compared to the horizontal direction. The 3S structure bearing has better vibration reduction and structural stability than other schemes. The research results provide a reference for the vibration control method of rotating machinery. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
Optimal Coherence Length Control in Interferometric Fiber Optic Hydrophones via PRBS Modulation: Theory and Experiment
by Wujie Wang, Qihao Hu, Lina Ma, Fan Shang, Hongze Leng and Junqiang Song
Sensors 2025, 25(15), 4711; https://doi.org/10.3390/s25154711 - 30 Jul 2025
Viewed by 167
Abstract
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, [...] Read more.
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, establishing the first theoretical model that quantitatively links PRBS parameter to coherence length, elucidating the mechanism underlying its suppression of parasitic interference noise. Furthermore, our research findings demonstrate that while reducing the laser coherence length effectively mitigates parasitic interference noise in IFOHs, this reduction also leads to elevated background noise caused by diminished interference visibility. Consequently, the modulation of coherence length requires a balanced optimization approach that not only suppresses parasitic noise but also minimizes visibility-introduced background noise, thereby determining the system-specific optimal coherence length. Through theoretical modeling and experimental validation, we determined that for IFOH systems with a 500 ns delay, the optimal coherence lengths for link fibers of 3.3 km and 10 km are 0.93 m and 0.78 m, respectively. At the optimal coherence length, the background noise level in the 3.3 km system reaches −84.5 dB (re: rad/√Hz @1 kHz), representing an additional noise suppression of 4.5 dB beyond the original suppression. This study provides a comprehensive theoretical and experimental solution to the long-standing contradiction between high laser monochromaticity, stability and appropriate coherence length, establishing a coherence modulation noise suppression framework for hydrophones, gyroscopes, distributed acoustic sensing (DAS), and other fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 9169 KiB  
Article
Dynamic Mission Planning Framework for Collaborative Underwater Operations Using Behavior Trees
by Seunghyuk Choi and Jongdae Jung
J. Mar. Sci. Eng. 2025, 13(8), 1458; https://doi.org/10.3390/jmse13081458 - 30 Jul 2025
Viewed by 216
Abstract
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each [...] Read more.
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each encapsulated in an independent sub-tree to enable modular error handling and seamless phase transitions. The AUV and mothership operate entirely underwater, with real-time docking to a moving platform. An extended Kalman filter (EKF) fuses data from inertial, pressure, and acoustic sensors for accurate navigation and state estimation. At the same time, obstacle avoidance leverages forward-looking sonar (FLS)-based potential field methods to react to unpredictable underwater hazards. The system is implemented on the robot operating system (ROS) and validated in the Stonefish physics engine simulator. Simulation results demonstrate reliable mission execution, successful dynamic docking under communication delays and sensor noise, and robust retrieval from injected faults, confirming the validity and stability of the proposed architecture. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

13 pages, 1009 KiB  
Article
A Statistical Optimization Method for Sound Speed Profiles Inversion in the South China Sea Based on Acoustic Stability Pre-Clustering
by Zixuan Zhang, Ke Qu and Zhanglong Li
Appl. Sci. 2025, 15(15), 8451; https://doi.org/10.3390/app15158451 - 30 Jul 2025
Viewed by 176
Abstract
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine [...] Read more.
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine learning clustering. Disturbance mode principal component analysis is first used to extract characteristic parameters, and then a machine learning clustering algorithm is adopted to pre-classify SSP samples according to acoustic stability. The SSP inversion experimental results show that: (1) the SSP samples of the South China Sea can be divided into three clusters of disturbance modes with statistically significant differences. (2) The regression inversion method based on cluster attribution reduces the average error of SSP inversion for data from 2018 to 1.24 m/s, which is more than 50% lower than what can be achieved with the traditional method without pre-clustering. (3) Transmission loss prediction verification shows that the proposed method can produce highly accurate sound field calculations in environmental assessment tasks. The acoustic stability pre-clustering technology proposed in this study provides an innovative solution for the statistical modeling of marine environment parameters by effectively decoupling the mixed effect of SSP spatiotemporal disturbance patterns. Its error control level (<1.5 m/s) is 37% higher than that of the single empirical orthogonal function regression method, showing important potential in underwater acoustic applications in complex marine dynamic environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 257
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

30 pages, 5612 KiB  
Review
In-Situ Monitoring and Process Control in Material Extrusion Additive Manufacturing: A Comprehensive Review
by Alexander Isiani, Kelly Crittenden, Leland Weiss, Okeke Odirachukwu, Ramanshu Jha, Okoye Johnson and Osinachi Abika
J. Exp. Theor. Anal. 2025, 3(3), 21; https://doi.org/10.3390/jeta3030021 - 29 Jul 2025
Viewed by 214
Abstract
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations [...] Read more.
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations in process parameters and material behavior during fabrication. In-situ monitoring and advanced process control systems have been increasingly integrated into MEAM to address these issues, enabling real-time detection of defects, optimization of printing conditions, reliability of fabricated parts, and enhanced control over mechanical properties. This review examines the state-of-the-art in-situ monitoring techniques, including thermal imaging, vibrational sensing, rheological monitoring, printhead positioning, acoustic sensing, image recognition, and optical scanning, and their integration with process control strategies, such as closed-loop feedback systems and machine learning algorithms. Key challenges, including sensor accuracy, data processing complexity, and scalability, are discussed alongside recent advancements and their implications for industrial applications. By synthesizing current research, this work highlights the critical role of in-situ monitoring and process control in advancing the reliability and precision of MEAM, paving the way for its broader adoption in high-performance manufacturing. Full article
Show Figures

Figure 1

25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Viewed by 330
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

Back to TopTop