Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation
Abstract
1. Introduction
2. Proposed Method
2.1. Geometric Recursion Rule
2.2. Maze Path Length
2.3. Order-Dependent Sound Speed and Refractive Index
2.4. Effect of Slit Width D on Acoustic Performance
3. Band Structures of the Circular-Loop Fractal Acoustic Metamaterials
3.1. Governing Equations and Boundary Conditions
3.2. Effective-Parameter Retrieval and Physical Interpretation
3.3. Numerical Validation of Transmission Loss and Sound-Insulation Performance
4. Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allard, J.F.; Atalla, N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 5, p. 11. [Google Scholar]
- Song, H.; Ding, X.; Cui, Z.; Hu, H. Research Progress and Development Trends of Acoustic Metamaterials. Molecules 2021, 26, 4018. [Google Scholar] [CrossRef]
- Wang, H.; Jun, L.; Chen, J.; Li, Y. Sound field enhancement based on multiple-cavity metamaterial. Acta Phys. Sin. 2021, 70, 154301. [Google Scholar] [CrossRef]
- Li, G.; Chen, Y.; Chen, W.; Liu, J.; He, H. Local resonance—Helmholtz lattices with simultaneous solid-borne elastic waves and air-borne sound waves attenuation performance. Appl. Acoust. 2022, 186, 108450. [Google Scholar] [CrossRef]
- Ramos, D.; Godinho, L.; Amado-Mendes, P.; Mareze, P. Broadband low-frequency bidimensional honeycomb lattice metastructure based on the coupling of subwavelength resonators. Appl. Acoust. 2022, 199, 109038. [Google Scholar] [CrossRef]
- Peiró-Torres, M.P.; Castiñeira-Ibáñez, S.; Redondo, J.; Sánchez-Pérez, J.V. Interferences in locally resonant sonic metamaterials formed from Helmholtz resonators. Appl. Phys. Lett. 2019, 114, 171901. [Google Scholar] [CrossRef]
- Ma, F.; Wang, C.; Liu, C.; Wu, J.H. Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 2021, 129, 231103. [Google Scholar] [CrossRef]
- Huang, R.-N.; Xin, Y.-J.; Cheng, S.-L.; Sun, Y.-T.; Yan, Q.; Ding, Q. Scattering properties of labyrinthine metamaterials with different numbers of resonance units. Phys. B Condens. Matter 2023, 671, 415446. [Google Scholar] [CrossRef]
- Cambonie, T.; Gourdon, E.; Redon, E.; Leclere, Q. Influence of right-angled elbows on the modal response of labyrinthine meta-materials. Wave Motion 2023, 123, 103228. [Google Scholar] [CrossRef]
- Fang, B.; Zhang, R.; Chen, T.; Wang, W.; Zhu, J.; Cheng, W. Bandgap optimization and inverse design of labyrinth metamaterials for sound insulation. J. Build. Eng. 2024, 86, 108898. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, Y.; Liu, X.; Christensen, J. Subwavelength multiple topological interface states in one-dimensional labyrinthine acoustic metamaterials. Phys. Rev. B 2019, 99, 224104. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef]
- Ren, S.; Liu, Y.; Sun, W.; Wang, H.; Lei, Y.; Wang, H.; Zeng, X. Broadband low-frequency sound absorbing metastructures composed of impedance matching coiled-up cavity and porous materials. Appl. Acoust. 2022, 200, 109061. [Google Scholar] [CrossRef]
- Liu, C.; Xia, B.; Yu, D. The spiral-labyrinthine acoustic metamaterial by coiling up space. Phys. Lett. A 2017, 381, 3112–3118. [Google Scholar] [CrossRef]
- Li, X.-f.; Cheng, S.-L.; Yang, H.-Y.; Yan, Q.; Wang, B.; Xin, Y.-J.; Sun, Y.-T.; Ding, Q.; Yan, H.; Li, Y.-J. Analysis of low frequency vibration attenuation and wave propagation mechanism of graded maze structure. Phys. B Condens. Matter 2023, 649, 414519. [Google Scholar] [CrossRef]
- Liang, X.; Luo, J.; Chu, J.; Liang, H.; Meng, D.; Zhang, Z. Low-frequency acoustic edge modes based on a triangular maze. Phys. Scr. 2024, 99, 035030. [Google Scholar] [CrossRef]
- Chatterjee, T.; Karličić, D.; Cajić, M.; Adhikari, S.; Friswell, M.I. Uncertainty quantification in inerter-based quasiperiodic lattices. Int. J. Mech. Sci. 2023, 249, 108258. [Google Scholar] [CrossRef]
- Karthik, R.; Srinivasan, K. Effect of Hilbert Fractal Acoustic Metamaterials on Ventilation Noise Control. J. Vib. Acoust. 2025, 147, 021003. [Google Scholar] [CrossRef]
- Xin, Y.-j.; Huang, R.-N.; Li, P.; Yan, H.; Dong, X.-J.; Yan, Q.; Sun, Y.-T.; Cheng, S.-L.; Zhao, Q.-X. Labyrinth acoustic metamaterials with fractal structure based on Hilbert curve. Phys. B Condens. Matter 2023, 667, 415150. [Google Scholar] [CrossRef]
- Baek, S.-H.; Jang, J.-Y.; Song, K.-J.; Park, S.-H. Design of flat broadband sound insulation metamaterials by combining Helmholtz resonator and fractal structure. J. Mech. Sci. Technol. 2021, 35, 2809–2817. [Google Scholar] [CrossRef]
- Man, X.; Xia, B.; Luo, Z.; Liu, J.; Li, K.; Nie, Y. Engineering three-dimensional labyrinthine fractal acoustic metamaterials with low-frequency multi-band sound suppression. J. Acoust. Soc. Am. 2021, 149, 308–319. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, G.; Zhu, C. Controlling sound transmission by space-coiling fractal acoustic metamaterials with broadband on the subwavelength scale. Appl. Acoust. 2022, 188, 108585. [Google Scholar] [CrossRef]
- He, C.; Li, Z.; Wu, G.; Tao, M. Fractal acoustic metamaterials with near-zero index and negative properties. Appl. Acoust. 2024, 217, 109825. [Google Scholar] [CrossRef]
- Xia, B.; Li, L.; Liu, J.; Yu, D. Acoustic Metamaterial with Fractal Coiling Up Space for Sound Blocking in a Deep Subwavelength Scale. ASME J. Vib. Acoust. 2018, 140, 011011. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, M.; Xu, W.; Yang, T.; Pei, D.; Jiang, H.; Wang, Y.; Shi, C. Fractal Acoustic Metamaterials with Subwavelength and Broadband Sound Insulation. Shock. Vib. 2019, 2019, 1894073. [Google Scholar] [CrossRef]
- Cao, D.; Wang, L.; Wang, J.; Guo, X.; Li, H. Design and sound absorption analysis of labyrinthine acoustic metamaterials based on fractal theory. Int. J. Solids Struct. 2025, 306, 113121. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Dong, T.; Hao, T.; Wang, J. Study of Fractal Honeycomb Structural Mechanics Metamaterial Vibration Bandgap Characteristics. J. Vib. Eng. Technol. 2024, 12, 909–924. [Google Scholar] [CrossRef]
- Krushynska, A.O.; Bosia, F.; Pugno, N.M. Labyrinthine Acoustic Metamaterials with Space-Coiling Channels for Low-Frequency Sound Control. Acta Acust. 2018, 104, 200–210. [Google Scholar] [CrossRef]
- Molerón, M.; Serra-Garcia, M.; Daraio, C. Visco-thermal effects in acoustic metamaterials: From total transmission to total reflection and high absorption. New J. Phys. 2016, 18, 033003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Sun, Y.; Wang, Y.; Li, Y.; Gu, X. Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation. Materials 2025, 18, 3616. https://doi.org/10.3390/ma18153616
Wang J, Sun Y, Wang Y, Li Y, Gu X. Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation. Materials. 2025; 18(15):3616. https://doi.org/10.3390/ma18153616
Chicago/Turabian StyleWang, Jing, Yumeng Sun, Yongfu Wang, Ying Li, and Xiaojiao Gu. 2025. "Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation" Materials 18, no. 15: 3616. https://doi.org/10.3390/ma18153616
APA StyleWang, J., Sun, Y., Wang, Y., Li, Y., & Gu, X. (2025). Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation. Materials, 18(15), 3616. https://doi.org/10.3390/ma18153616