Innovations in Underwater Robotic Software Systems

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Ocean Engineering".

Deadline for manuscript submissions: 30 July 2025 | Viewed by 1536

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Department of Electrical and Computer Engineering, Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
Interests: control theory; advanced control theory; network; stability analysis; systems dynamics; stability; nonlinear dynamics; MATLAB simulation; modeling and simulation; Kalman filtering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As underwater robotics evolves, there is a critical need for cutting-edge research addressing challenges and advancements in this dynamic field. This Special Issue aims to deepen our understanding of underwater robotics applications, pushing the boundaries of exploration, research, and industrial operations. Focusing on software systems, this Special Issue explores multi-agent coordination, communication, navigation, control, and path-planning for underwater robotic platforms. It confronts key challenges, emphasizing advancements in multi-agent systems, communication technologies tailored for underwater environments, precise navigation techniques, novel control algorithms, and path planning developments. We welcome original papers presenting cutting-edge solutions and insights into pressing issues and challenges in the field.

Dr. Francisco Rego
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine multi-agent systems
  • subsea communication technologies
  • underwater navigation systems
  • underwater control algorithms
  • marine path planning algorithms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 11926 KiB  
Article
Vision-Based Underwater Docking Guidance and Positioning: Enhancing Detection with YOLO-D
by Tian Ni, Can Sima, Wenzhong Zhang, Junlin Wang, Jia Guo and Lindan Zhang
J. Mar. Sci. Eng. 2025, 13(1), 102; https://doi.org/10.3390/jmse13010102 - 7 Jan 2025
Viewed by 1024
Abstract
This study proposed a vision-based underwater vertical docking guidance and positioning method to address docking control challenges for human-operated vehicles (HOVs) and unmanned underwater vehicles (UUVs) under complex underwater visual conditions. A cascaded detection and positioning strategy incorporating fused active and passive markers [...] Read more.
This study proposed a vision-based underwater vertical docking guidance and positioning method to address docking control challenges for human-operated vehicles (HOVs) and unmanned underwater vehicles (UUVs) under complex underwater visual conditions. A cascaded detection and positioning strategy incorporating fused active and passive markers enabled real-time detection of the relative position and pose between the UUV and docking station (DS). A novel deep learning-based network model, YOLO-D, was developed to detect docking markers in real time. YOLO-D employed the Adaptive Kernel Convolution Module (AKConv) to dynamically adjust the sample shapes and sizes and optimize the target feature detection across various scales and regions. It integrated the Context Aggregation Network (CONTAINER) to enhance small-target detection and overall image accuracy, while the bidirectional feature pyramid network (BiFPN) facilitated effective cross-scale feature fusion, improving detection precision for multi-scale and fuzzy targets. In addition, an underwater docking positioning algorithm leveraging multiple markers was implemented. Tests on an underwater docking markers dataset demonstrated that YOLO-D achieved a detection accuracy of mAP@0.5 to 94.5%, surpassing the baseline YOLOv11n with improvements of 1.5% in precision, 5% in recall, and 4.2% in mAP@0.5. Pool experiments verified the feasibility of the method, achieving a 90% success rate for single-attempt docking and recovery. The proposed approach offered an accurate and efficient solution for underwater docking guidance and target detection, which is of great significance for improving the safety of docking. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

Back to TopTop