Efficient Particle Aggregation Through SSAW Phase Modulation
Abstract
1. Introduction
2. Computational Methods
2.1. Mathematical Models
2.1.1. Governing Equations for Fluid Dynamics
2.1.2. Acoustophoretic Particle Manipulation
2.2. Model Setup and Numerical Implementation
3. Phase Influence on Acoustic Field
3.1. Acoustic Field Characteristics
3.2. Phase Modulation Design for Particle Manipulation
4. Particle Manipulation
4.1. Single Particle Manipulation
4.2. Multiple Particles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rufo, J.; Cai, F.; Friend, J.; Wiklund, M.; Huang, T.J. Acoustofluidics for biomedical applications. Nat. Rev. Methods Primers 2022, 2, 30. [Google Scholar] [CrossRef]
- Stringer, M.; Zeng, Z.; Zhang, X. Methodologies, technologies, and strategies for acoustic streaming-based acoustofluidics. Appl. Phys. Rev. 2023, 10, 011315. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, S.; Feng, L.; Zhang, L.; Wang, J.; Chang, K.; Chen, M. Acoustofluidics: A Versatile Tool for Micro/Nano Separation at the Cellular, Subcellular, and Biomolecular Levels. Adv. Mater. Technol. 2023, 8, 2202201. [Google Scholar] [CrossRef]
- Dumčius, P.; Mikhaylov, R.; Zhang, X.; Bareford, M.; Stringer, M.; Errington, R.; Sun, C.; Gonzalez, E.; Krukovski, T.; Falcon-Perez, J.M.; et al. Dual-Wave Acoustofluidic Centrifuge for Ultrafast Concentration of Nanoparticles and Extracellular Vesicles. Small 2023, 19, 2300390. [Google Scholar] [CrossRef]
- Zhang, X.; Dumčius, P.; Mikhaylov, R.; Qi, J.; Stringer, M.; Sun, C.; Nguyen, V.D.; Zhou, Y.; Sun, X.; Liang, D.; et al. Surface Acoustic Wave-Enhanced Multi-View Acoustofluidic Rotation Cytometry (MARC) for Pre-Cytopathological Screening. Adv. Sci. 2024, 11, 2403574. [Google Scholar] [CrossRef]
- Shen, L.; Tian, Z.; Yang, K.; Rich, J.; Xia, J.; Upreti, N.; Zhang, J.; Chen, C.; Hao, N.; Pei, Z.; et al. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation. Nat. Commun. 2024, 15, 9059. [Google Scholar] [CrossRef]
- Li, X.; Deng, Z.; Zhang, W.; Zhou, W.; Liu, X.; Quan, H.; Li, J.; Li, P.; Li, Y.; Hu, C.; et al. Oscillating microbubble array–based metamaterials (OMAMs) for rapid isolation of high-purity exosomes. Sci. Adv. 2025, 11, 8915. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, S.; Huang, P.-H.; Wang, Z.; Zhang, P.; Gu, Y.; Bachman, H.; Chen, C.; Wu, M.; Xie, Y.; et al. Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci. Adv. 2019, 5, 6062. [Google Scholar] [CrossRef]
- Li, Y.; Liang, D.; Kabla, A.; Zhang, Y.; Ma, J.; Yang, X. Dependence of acoustophoretic aggregation on the impedance of microchannel’s walls. Comput. Methods Programs Biomed. 2025, 260, 108530. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, D.; Kabla, A.; Zhang, Y.; Yang, X. Sensitivity of acoustofluidic particle manipulation to microchannel height in standing surface acoustic wave-based microfluidic devices. Phys. Fluids 2023, 35, 122018. [Google Scholar] [CrossRef]
- Nama, N.; Barnkob, R.; Mao, Z.; Kähler, C.J.; Costanzo, F.; Huang, T.J. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab Chip 2015, 15, 2700–2709. [Google Scholar] [CrossRef]
- Barnkob, R.; Nama, N.; Ren, L.; Huang, T.J.; Costanzo, F.; Kähler, C.J. Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems. Phys. Rev. Appl. 2018, 9, 014027. [Google Scholar] [CrossRef]
- Akiyama, Y.; Egawa, T.; Koyano, K.; Moriwaki, H. Acoustic focusing of microplastics in microchannels: A promising continuous collection approach. Sens. Actuators B Chem. 2020, 304, 127328. [Google Scholar] [CrossRef]
- Shi, J.; Yazdi, S.; Steven Lin, S.-C.; Ding, X.; Chiang, I.-K.; Sharp, K.; Huang, T.J. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 2011, 11, 2319. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, H.; Zhang, L.; Yi, K.; Cui, H.; Wang, F.; Liu, W.; Zhao, X.; Zhou, F.; Guo, S. The acoustofluidic focusing and separation of rare tumor cells using transparent lithium niobate transducers. Lab Chip 2019, 19, 3922–3930. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, M.; Yang, S.; Wu, Y.; Gu, Y.; Chen, C.; Ye, J.; Xie, Z.; Tian, Z.; Bachman, H.; et al. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. Lab Chip 2020, 20, 1298–1308. [Google Scholar] [CrossRef]
- Mikhaylov, R.; Martin, M.S.; Dumcius, P.; Wang, H.; Wu, F.; Zhang, X.; Akhimien, V.; Sun, C.; Clayton, A.; Fu, Y.; et al. A reconfigurable and portable acoustofluidic system based on flexible printed circuit board for the manipulation of microspheres. J. Micromech. Microeng. 2021, 31, 074003. [Google Scholar] [CrossRef]
- Hossein, F.; Angeli, P. A review of acoustofluidic separation of bioparticles. Biophys. Rev. 2023, 15, 2005–2025. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, C.; Mao, Z.; Bachman, H.; Becker, R.; Rufo, J.; Wang, Z.; Zhang, P.; Mai, J.; Yang, S.; et al. Acoustofluidic centrifuge for nanoparticle enrichment and separation. Sci. Adv. 2021, 7, 0467. [Google Scholar] [CrossRef]
- Collins, D.J.; O’Rorke, R.; Neild, A.; Han, J.; Ai, Y. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Soft Matter 2019, 15, 8691–8705. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ahmed, D.; Mao, X.; Lin, S.-C.S.; Lawit, A.; Huang, T.J. Acoustic tweezers: Patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 2009, 9, 2890. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, M.; Wang, J.; Wen, B.; Lu, L.; Ren, H. Acoustofluidics for cell patterning and tissue engineering. Eng. Regen. 2022, 3, 397–406. [Google Scholar] [CrossRef]
- Maramizonouz, S.; Jia, C.; Rahmati, M.; Zheng, T.; Liu, Q.; Torun, H.; Wu, Q.; Fu, Y. Acoustofluidic Patterning inside Capillary Tubes Using Standing Surface Acoustic Waves. Int. J. Mech. Sci. 2022, 214, 106893. [Google Scholar] [CrossRef]
- Guo, F.; Li, P.; French, J.B.; Mao, Z.; Zhao, H.; Li, S.; Nama, N.; Fick, J.R.; Benkovic, S.J.; Huang, T.J. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2015, 112, 43–48. [Google Scholar] [CrossRef]
- Wu, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P.-H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 2017, 114, 10584–10589. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Lin, S.-C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.-K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuan, F.; Xie, Z.; Sun, C.; Wu, F.; Mikhaylov, R.; Shen, M.; Yang, J.; Zhou, Y.; Liang, D.; et al. Modelling hybrid acoustofluidic devices for enhancing Nano- and Micro-Particle manipulation in microfluidics. Appl. Acoust. 2023, 205, 109258. [Google Scholar] [CrossRef]
- Orloff, N.D.; Dennis, J.R.; Cecchini, M.; Schonbrun, E.; Rocas, E.; Wang, Y.; Novotny, D.; Simmonds, R.W.; Moreland, J.; Takeuchi, I.; et al. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics. Biomicrofluidics 2011, 5, 044107. [Google Scholar] [CrossRef]
- Bruus, H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 2012, 12, 1014. [Google Scholar] [CrossRef]
- Karlsen, J.T.; Bruus, H. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys. Rev. E 2015, 92, 043010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Z.; Wei, Z.; Wang, Y.; Niu, X.; Liang, D. Efficient Particle Aggregation Through SSAW Phase Modulation. Micromachines 2025, 16, 910. https://doi.org/10.3390/mi16080910
Li Y, Li Z, Wei Z, Wang Y, Niu X, Liang D. Efficient Particle Aggregation Through SSAW Phase Modulation. Micromachines. 2025; 16(8):910. https://doi.org/10.3390/mi16080910
Chicago/Turabian StyleLi, Yiming, Zekai Li, Zuozhi Wei, Yiran Wang, Xudong Niu, and Dongfang Liang. 2025. "Efficient Particle Aggregation Through SSAW Phase Modulation" Micromachines 16, no. 8: 910. https://doi.org/10.3390/mi16080910
APA StyleLi, Y., Li, Z., Wei, Z., Wang, Y., Niu, X., & Liang, D. (2025). Efficient Particle Aggregation Through SSAW Phase Modulation. Micromachines, 16(8), 910. https://doi.org/10.3390/mi16080910