Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,605)

Search Parameters:
Keywords = absorption measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 (registering DOI) - 3 Aug 2025
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

14 pages, 6988 KiB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 (registering DOI) - 3 Aug 2025
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 (registering DOI) - 2 Aug 2025
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 (registering DOI) - 2 Aug 2025
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

11 pages, 1758 KiB  
Article
Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
by Fan Zhang, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, Zhiqiang Li, Hongming Wang and Bing Jin
Photonics 2025, 12(8), 779; https://doi.org/10.3390/photonics12080779 (registering DOI) - 1 Aug 2025
Abstract
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan [...] Read more.
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan and I-scan techniques at both 800 nm and 900 nm. Both dyes exhibited strong saturable absorption (SA), confirming their potential as saturable absorbers. Critically, the comparative analysis revealed that SNF exhibits a significantly greater nonlinear absorption coefficient (β) compared to LNF under identical conditions. For instance, at 800 nm, the β of SNF was approximately 3–5 times larger than that of LNF. This result conclusively demonstrates that the introduction of long hydrophobic alkyl chains attenuates the NLO response. Furthermore, I-scan measurements revealed excellent SA performance, with high modulation depths (e.g., LNF: 43.0% at 900 nm) and low saturation intensities. This work not only clarifies the structure–property relationship in these D-A-D dyes but also presents a clear strategy for modulating the NLO properties of organic chromophores for applications in near-infrared pulsed lasers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

15 pages, 277 KiB  
Article
Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance
by Irena Frankovic, Aleksandra Zeljkovic, Ivana Djuricic, Ana Ninic, Jelena Vekic, Minja Derikonjic, Sanja Erceg, Ratko Tomasevic, Milica Mamic, Milos Mitrovic and Tamara Gojkovic
Int. J. Mol. Sci. 2025, 26(15), 7462; https://doi.org/10.3390/ijms26157462 (registering DOI) - 1 Aug 2025
Viewed by 33
Abstract
Cholesterol accumulation plays a significant role in the pathogenesis of metabolic-dysfunction-associated steatotic liver disease (MASLD), yet changes in cholesterol homeostasis in MASLD remain insufficiently investigated. This study aimed to examine alterations in cholesterol synthesis and absorption by measuring plasma levels of endogenous cholesterol [...] Read more.
Cholesterol accumulation plays a significant role in the pathogenesis of metabolic-dysfunction-associated steatotic liver disease (MASLD), yet changes in cholesterol homeostasis in MASLD remain insufficiently investigated. This study aimed to examine alterations in cholesterol synthesis and absorption by measuring plasma levels of endogenous cholesterol precursors (as markers of synthesis) and phytosterols (as indicators of absorption). A total of 124 MASLD patients and 43 healthy individuals were included. Our results showed higher plasma concentrations of lathosterol in the MASLD group (p = 0.006), in parallel with comparable concentrations of desmosterol (p = 0.472) and all analyzed phytosterols in both groups. Correlation analysis showed that both lathosterol and desmosterol were positively associated with non-invasive hepatic steatosis indices: FLI, HSI, and TyG index (p < 0.01, p < 0.01, and p < 0.05, respectively). Multivariate linear regression further confirmed that these synthesis markers remained significant predictors of FLI (p = 0.010), HSI (p = 0.013), and TyG index (p = 0.002), even after adjusting for other relevant variables. These findings indicate that MASLD is associated with a shift in cholesterol homeostasis towards enhanced endogenous cholesterol synthesis. Full article
(This article belongs to the Special Issue Molecular Research on Dyslipidemia)
15 pages, 3792 KiB  
Article
Polarization Characteristics of a Metasurface with a Single via and a Single Lumped Resistor for Harvesting RF Energy
by Erik Madyo Putro, Satoshi Yagitani, Tomohiko Imachi and Mitsunori Ozaki
Appl. Sci. 2025, 15(15), 8561; https://doi.org/10.3390/app15158561 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting [...] Read more.
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting RF (radio frequency) energy. FR4 dielectric is used as a substrate supported by a metal ground plane. Polarization-dependent properties with specific surface current patterns and voltage dip are obtained when simulating under normal incidence of a plane wave. This characteristic results from changes in surface current conditions when the polarization angle is varied. A voltage dip appears at a specific polarization angle when the surface current pattern is symmetrical. This condition occurs when the position of the lumped resistor from the center of the patch is perpendicular to the linearly polarized incident electric field. A couple of 10 × 10 arrays with different resistor positions are fabricated and tested. The experimental results are in good agreement with the simulated results. The proposed design demonstrates a symmetric unit cell structure with one via and a resistor that exhibits polarization-dependent behavior for linear polarization. An asymmetric patch design is explored through both simulation and measurement to mitigate polarization dependence by suppressing the dip behavior, albeit at the expense of reduced absorption efficiency. This study provides a complete polarization analysis for both symmetric and asymmetric patch metasurfaces with a single via and a single lumped resistor, and introduces a predictive relation between the position of the resistor relative to the center of the patch and the resulting voltage dip behavior. Full article
(This article belongs to the Special Issue Electromagnetic Waves: Applications and Challenges)
Show Figures

Figure 1

13 pages, 3901 KiB  
Article
Unveiling the Fire Effects on Hydric Dynamics of Carbonate Stones: Leeb Hardness and Ultrasonic Pulse Velocity as Capillary Coefficient Predictors
by Roberta Lobarinhas, Amélia Dionísio and Gustavo Paneiro
Appl. Sci. 2025, 15(15), 8567; https://doi.org/10.3390/app15158567 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior [...] Read more.
Natural carbonate stones such as limestones and marbles are widely used in heritage and contemporary architecture, yet their durability is increasingly threatened by wildfire-related thermal stress. Since water transport plays a key role in stone deterioration, understanding how high temperatures affect hydric behavior is critical for conservation. This study investigates thirteen Portuguese carbonate lithotypes (including marbles, limestones, a travertine, and a breccia) exposed to temperatures of 300 °C and 600 °C. Capillary absorption and open porosity were measured, alongside Leeb hardness (HL) and ultrasonic pulse velocity (UPV), to evaluate their predictive capacity for post-fire moisture behavior. Results show that thermal exposure increases porosity and capillary uptake while reducing mechanical cohesion. Strong correlations between UPV and hydric parameters across temperature ranges highlight its reliability as a non-invasive diagnostic tool. HL performed well in compact stones but was less consistent in porous or heterogeneous lithologies. The findings support the use of NDT tests, like UPV and HL, for rapid post-fire assessments and emphasize the need for lithology-specific conservation strategies. Full article
(This article belongs to the Special Issue Non-Destructive Techniques for Heritage Conservation)
Show Figures

Figure 1

9 pages, 2739 KiB  
Article
Study on Measurement Methods for Moisture Content Inside Wood
by Takuro Mori, Ayano Ariki, Yutaro Enatsu, Yuri Sadakane and Kei Tanaka
Buildings 2025, 15(15), 2719; https://doi.org/10.3390/buildings15152719 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
There has been growing interest in constructing mid- and high-rise wooden buildings in recent years. To ensure the feasibility of these structures, it is necessary to provide evidence that their long-term reliability can be guaranteed. While long-term testing is typically necessary, a continuous [...] Read more.
There has been growing interest in constructing mid- and high-rise wooden buildings in recent years. To ensure the feasibility of these structures, it is necessary to provide evidence that their long-term reliability can be guaranteed. While long-term testing is typically necessary, a continuous monitoring system for the moisture content of wood materials used in buildings has been proposed as an alternative. The proposed method measures the change in the local moisture content using the equilibrium moisture content calculated from the temperature and humidity measured using temperature and humidity sensors. The study used Japanese cypress specimens with dimensions of 50 mm, 75 mm, and 100 mm cubes and Douglas fir specimens of 50 mm cubes. The moisture content was measured under various external environments. Results showed that this system effectively captured changes in local moisture content, reflecting fluctuations in temperature and humidity in a controlled thermo-hygrostat over a three-day moisture absorption environment (20 °C, 95% humidity). Additionally, it was observed that higher moisture content levels yielded correspondingly higher local moisture content measurements compared to those obtained using the oven-drying method. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 7130 KiB  
Article
Modification Effects and Mechanism of Cement Paste Wrapping on Sulfate-Containing Recycled Aggregate
by Xiancui Yan, Wen Chen, Zimo He, Hui Liu, Shengbang Xu, Shulin Lu, Minqi Hua and Xinjie Wang
Materials 2025, 18(15), 3617; https://doi.org/10.3390/ma18153617 (registering DOI) - 31 Jul 2025
Viewed by 124
Abstract
The utilization of recycled concrete aggregate presents an effective solution for construction waste mitigation. However, concrete service in sulfate environments leads to sulfate ion retention in recycled aggregates, substantially impairing their quality and requiring modification approaches. A critical question remains whether traditional recycled [...] Read more.
The utilization of recycled concrete aggregate presents an effective solution for construction waste mitigation. However, concrete service in sulfate environments leads to sulfate ion retention in recycled aggregates, substantially impairing their quality and requiring modification approaches. A critical question remains whether traditional recycled aggregate modification techniques can effectively enhance the performance of these sulfate-containing recycled aggregates (SRA). Cement paste wrapping in various proportions was used in this investigation to enhance SRA. The performance of both SRA and modified aggregates was systematically assessed through measurements of apparent density, water absorption, crushing value, and microhardness. Microstructural analysis of the cement wrapping modification mechanism was conducted by scanning electron microscopy coupled with mercury intrusion porosimetry. Results revealed that internal sulfate addition decreased the crushing value and increased the water absorption of recycled aggregates, primarily due to micro-cracks formed by expansion. Additionally, the pores were occupied by erosion products, leading to a slight increase in the apparent density of aggregates. The performance of SRA was effectively enhanced by cement paste wrapping at a 0.6 water–binder ratio, whereas it was negatively impacted by a ratio of 1.0. The modifying effect became even more effective when 15% fly ash was added to the wrapping paste. Scanning electron microscopy observations revealed that the interface of SRA was predominantly composed of gypsum crystals. Cement paste wrapping greatly enhanced the original interface structure, despite a new dense interface formed in the modified aggregates. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

19 pages, 5466 KiB  
Article
Evaluation of Bending Stress and Shape Recovery Behavior Under Cyclic Loading in PLA 4D-Printed Lattice Structures
by Maria Pia Desole, Annamaria Gisario and Massimiliano Barletta
Appl. Sci. 2025, 15(15), 8540; https://doi.org/10.3390/app15158540 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in [...] Read more.
This study aims to analyze the bending behavior of polylactic acid (PLA) structures made by fusion deposition modeling (FDM) technology. The investigation analyzed chiral structures such as lozenge and clepsydra, as well as geometries with wavy patterns such as roller and Es, in addition to a honeycomb structure. All geometries have a relative density of 50%. After being subjected to three-point bending tests, the capacity to spring back with respect to the bending angle and the shape recovery of the structures were measured. The roller and lozenge structures demonstrated the best performance, with shape recovery assessed through three consecutive hot water immersion cycles. The lozenge structure exhibits 25% higher energy absorption than the roller, but the latter ensures better replicability and shape stability. Additionally, the roller absorbs 15% less energy than the lozenge, which experiences a 27% decrease in absorption between the first and second cycle. This work provides new insights into the bending-based energy absorption and recovery behavior of PLA metamaterials, relevant for applications in adaptive and energy-dissipating systems. Full article
Show Figures

Figure 1

25 pages, 25022 KiB  
Article
Research on Underwater Laser Communication Channel Attenuation Model Analysis and Calibration Device
by Wenyu Cai, Hengmei Wang, Meiyan Zhang and Yu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1483; https://doi.org/10.3390/jmse13081483 - 31 Jul 2025
Viewed by 87
Abstract
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, [...] Read more.
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, so as to explore the transmission influence mechanism under typical water quality environments. On this basis, a system of in situ measurements for underwater laser channel attenuation is designed and constructed, and several sets of experiments are carried out to verify the rationality and applicability of the model. The collected experimental data are denoised by the fusion of wavelet analysis and adaptive Kalman filtering (DWT-AKF in short) algorithm, and compared with the data measured by an underwater hyperspectral Absorption Coefficient Spectrophotometer (ACS in short), which shows that the channel attenuation coefficients of the model inversion and the measured values are in high agreement. The research results provide a reliable theoretical basis and experimental support for the performance optimization and engineering design of the underwater laser communication system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 5018 KiB  
Article
Machine Learning for the Photonic Evaluation of Cranial and Extracranial Sites in Healthy Individuals and in Patients with Multiple Sclerosis
by Antonio Currà, Riccardo Gasbarrone, Davide Gattabria, Nicola Luigi Bragazzi, Giuseppe Bonifazi, Silvia Serranti, Paolo Missori, Francesco Fattapposta, Carlotta Manfredi, Andrea Maffucci, Luca Puce, Lucio Marinelli and Carlo Trompetto
Appl. Sci. 2025, 15(15), 8534; https://doi.org/10.3390/app15158534 (registering DOI) - 31 Jul 2025
Viewed by 148
Abstract
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify [...] Read more.
This study aims to characterize short-wave infrared (SWIR) reflectance spectra at cranial (at the scalp overlying the frontal cortex and the temporal bone window) and extracranial (biceps and triceps) sites in patients with multiple sclerosis (MS) and age-/sex-matched controls. We sought to identify the diagnostic accuracy of wavelength-specific patterns in distinguishing MS from normal controls and spectral markers associated with disability (e.g., Expanded Disability Status Scale scores). To achieve these objectives, we employed a multi-site SWIR spectroscopy acquisition protocol that included measurements from traditional cranial locations as well as extracranial reference sites. Advanced spectral analysis techniques, including wavelength-dependent absorption modeling and machine learning-based classification, were applied to differentiate MS-related hemodynamic changes from normal physiological variability. Classification models achieved perfect performance (accuracy = 1.00), and cortical site regression models showed strong predictive power (EDSS: R2CV = 0.980; FSS: R2CV = 0.939). Variable Importance in Projection (VIP) analysis highlighted key wavelengths as potential spectral biomarkers. This approach allowed us to explore novel biomarkers of neural and systemic impairment in MS, paving the way for potential clinical applications of SWIR spectroscopy in disease monitoring and management. In conclusion, spectral analysis revealed distinct wavelength-specific patterns collected from cranial and extracranial sites reflecting biochemical and structural differences between patients with MS and normal subjects. These differences are driven by underlying physiological changes, including myelin integrity, neuronal density, oxidative stress, and water content fluctuations in the brain or muscles. This study shows that portable spectral devices may contribute to bedside individuation and monitoring of neural diseases, offering a cost-effective alternative to repeated imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medical Diagnostics: Second Edition)
Show Figures

Figure 1

20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 (registering DOI) - 31 Jul 2025
Viewed by 170
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

33 pages, 1782 KiB  
Review
Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
by Giuliano Pasquale Ramadori
Livers 2025, 5(3), 35; https://doi.org/10.3390/livers5030035 (registering DOI) - 31 Jul 2025
Viewed by 66
Abstract
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have [...] Read more.
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have put an end to the era of the biguanides as oral antidiabetics. The strongly hygroscopic metformin (1-1-dimethylbiguanide), first synthesized 1922 and resuscitated as an oral antidiabetic (type 2 of the elderly) compound first released in 1959 in France and in other European countries, was used in the first large multicenter prospective long-term trial in England in the UKPDS (1977–1997). It was then released in the USA after a short-term prospective trial in healthy overweight “young” type 2 diabetics (mean age 53 years) in 1995 for oral treatment of type 2 diabetes. It was, however, prescribed to mostly multimorbid older patients (above 60–65 years of age). Metformin is now the most used oral drug for type 2 diabetes worldwide. While intravenous administration of biguanides does not have any glucose-lowering effect, their oral administration leads to enormous increase in their intestinal concentration (up to 300-fold compared to that measured in the blood), to reduced absorption of glucose from the diet, to increased excretion of glucose through the stool, and to decrease in insulin serum level through increased hepatic uptake and decreased production. Intravenously injected F18-labeled glucose in metformin-treated type 2 diabetics accumulates in the small and even more in the large intestine. The densitometry picture observed in metformin-treated overweight diabetics is like that observed in patients after bowel-cleansing or chronically taking different types of laxatives, where the accumulated radioactivity can even reach values observed in colon cancer. The glucose-lowering mechanism of action of metformin is therefore not only due to inhibition of glucose uptake in the small intestine but also to “attraction” of glucose from the hepatocyte into the intestine, possibly through the insulin-mediated uptake in the hepatocyte and its secretion into the bile. Furthermore, these compounds have also a diuretic effect (loss of sodium and water in the urine) Acute gastrointestinal side effects accompanied by fluid loss often lead to the drugs’ dose reduction and strongly limit adherence to therapy. Main long-term consequences are “chronic” dehydration, deficiency of vitamin B12 and of iron, and, as observed for all the biguanides, to “chronic” increase in fasting and postprandial lactate plasma level as a laboratory marker of a clinical condition characterized by hypotension, oliguria, adynamia, and evident lactic acidosis. Metformin is not different from the other biguanides: synthalin B, buformin, and phenformin. The mechanism of action of the biguanides as antihyperglycemic substances and their side effects are comparable if not even stronger (abdominal pain, nausea, vomiting, diarrhea, fluid loss) to those of laxatives. Full article
Show Figures

Figure 1

Back to TopTop