Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
Abstract
1. Introduction: Development of Industrial Food Production, Hypercaloric Nutrition, Overweight/Obesity, and Type 2 Diabetes and Increasing Popularity of Biguanides
2. History of Biguanides: From the First Animal Experiments to the Production of the First Synthetic Compounds to Their First Oral Use as Substitute of Insulin or in Addition to Insulin in Overweight Type 2 Diabetics
3. Pharmacokinetic and Pharmacodynamic of Biguanides
“To produce Its Characteristic Effects a Drug Must Be Present in Appropriate Concentration at Its Site of Action”([126]; see also Table 1 and Table 2 of this article)
4. Mechanisms of Action (Lowering Effect of Serum Glucose) of Metformin and the Other Biguanides Therapy
5. Short- and Long-Term Side Effects of Metformin and Other Biguanides
5.1. Short-Term Side Effects of Therapy with Biguanides
5.2. Long-Term Side Effects of Metformin Therapy
6. Adherence to the Prescribed Dose of Metformin and Other Biguanides
7. Contraindications
8. Conclusions
Funding
Conflicts of Interest
References
- Estimated Global Population from 10,000BCE to 2100 (in Millions) Statista 2024. Available online: https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/ (accessed on 23 July 2025).
- The GBD 2015 Obesity Collaborators. Health effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 372, 13–27. [Google Scholar]
- New WHO Report: Europe Can Reverse Its Obesity “Epidemic”. Available online: https://www.who.int/europe/news/item/03-05-2022-new-who-report--europe-can-reverse-its-obesity--epidemic#:~:text=The%20new%20WHO%20report%20outlines,achieving%20environmentally%20sustainable%20food%20systems (accessed on 23 July 2025).
- WHO Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 May 2025).
- Kerac, M.; McGrath, M.; Connell, N.; Kompala, C.H.; Moore, W.H.; Bailey, J.; Bansma, R.; Berkley, J.A.; Briend, A.; Collins, S.; et al. “Severe Malnutrition”: Thinking deeply, communicating simply. BMJ Glob. Health 2020, 5, e003023. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, S.; Ohmori, K.; Miura, C.; Suzuki, Y.; Nakaya, N.; Fujita, K.; Sato, Y.; Tsubono, Y.; Tsuji, I.; Fukao, A.; et al. Body Mass Index and Mortality in Japan: The Miyagi Cohort Study. J. Epidemiol. 2004, 14, S33–S38. [Google Scholar] [CrossRef]
- Nippon.com. Japan Sets New Record Low for Food Self-Sufficiency on a Production Value Basis. Available online: https://www.nippon.com/en/japan-data/h01758/ (accessed on 23 July 2025).
- Klonowska-Siwak, E. The Japanese Food Market and the Japanese Business Culture. Available online: https://www.eu-japan.eu/sites/default/files/imce/workshops/EU-Japan%20Centre_EKS_30%20June%202022.pdf (accessed on 23 July 2025).
- WHO Hunger Numbers Stubbornly High for Three Consecutive Years as Global Crises Deepening Report. 1 in 11 People World Wide Faced Hunger in 2023, 1 in 5 in Africa. Available online: https://www.who.int/news/item/24-07-2024-hunger-numbers-stubbornly-high-for-three-consecutive-years-as-global-crises-deepen--un-report (accessed on 23 July 2025).
- Rosenfeld, L. Justus Liebig and Animal Chemistry. Clin. Chem. 2003, 49, 1696–1707. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Half of the World’s Habitable Land is Used for Agriculture. Our World Data 2019. 16 February 2024. Available online: https://ourworldindata.org/global-land-for-agriculture (accessed on 22 July 2025).
- World Food And Agriculture-Statistical Yearbook 2023. FAO: Rome, Italy, 2023. [CrossRef]
- Cordain, L.; Brand, J.; Eaton, S.B.; Man, N.; Holt, S.M.A.; Steta, J.D. Plant-Animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gather diets. Am. J. Clin. Nutr. 2000, 71, 682–692. [Google Scholar] [CrossRef]
- Stafford, N. History: The Changing notion of food. Nature 2010, 468, 16–17. [Google Scholar] [CrossRef]
- Wright, I. Livestock, Engine for Economic Growth and Sustainability CFSHLPE. Available online: https://www.fao.org/cfs/cfs-hlpe/insights/news-insights/news-detail/livestock-engine-for-economic-growth-and-sustainability/en (accessed on 23 July 2025).
- The World Bank. Moving Towards Sustainability: The Livestock Sector and the World Bank. Available online: https://www.worldbank.org/en/topic/agriculture/brief/moving-towards-sustainability-the-livestock-sector-and-the-world-bank (accessed on 23 July 2025).
- Doll, R.; Hill, A.B. Lung cancer and other causes of death in relation to smoking. A second report on mortality of british doctors. BMJ 1956, 2, 1070–1081. [Google Scholar] [CrossRef]
- Hopkinson, N.S. Smoking and Lung Cancer-70 long years on. BMJ 2024, 384, q443. [Google Scholar] [CrossRef]
- Dawber, T.R.; Moore, E.; Mann, G.V. II. coronary heart disease in the Framingham study. Am. J. Public Health 1957, 47, 4–24. [Google Scholar] [CrossRef]
- Hammond, C.; Horn, D. Smoking and death rates-report on forty-four months of follow-up of 187,783 men. JAMA 1958, 166, 1294–1308. [Google Scholar] [CrossRef]
- Sheps, M.C. Shall we Count the Living or the Dead? N. Engl. J. Med. 1958, 259, 1210–1214. [Google Scholar] [CrossRef]
- Doyle, J.T.; Dawber, T.R.; Kannel, W.B.; Heslin, S.A.; Kahn, H.A. Cigarette smoking and coronary heart disease. Combined experience of the Albany and Framingham Studies. N. Engl. J. Med. 1962, 266, 796–801. [Google Scholar] [CrossRef]
- Doll, R.; Peto, R. Mortality in relation to smoking20 years observations on male british doctors. BMJ 1976, 2, 1525–1536. [Google Scholar] [CrossRef]
- Doll, R.D.; Peto, R.; Hall, E.; Wheatley, K.; Gray, R. Mortality in relation to consumption of alcohol:13 years observation of male british doctors. BMJ 1994, 309, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Freund, K.; Belanger, A.J.; DÀgostino, R.B.; Kanner, W.B. The Health Risk of Smoking the framingham Study: 34 years of follow-up. Ann. Epidemiol. 1992, 3, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Magowska, A.M. Historical Perspectives. The changing face of hunger: From fasting to the concept of atherogenesis. Adv. Physiol. Edu. 2020, 44, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Keys, A.; Anderson, J.T.; Grande, F. Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet 1957, 2, 959–966. [Google Scholar] [CrossRef]
- Roine, P.; Pekkarinen, M.; Karvonen, M.J.; Kihlberg, J. Diet and cardiovascular disease in Finland. Lancet 1958, 2, 173–175. [Google Scholar] [CrossRef]
- Huijbregets, P.; Feskens, E.; Raesanen, L.; Fidanza, F.; Nissinen, A.; Menotti, A.; Kromhout, D. Dietary pattern and 20 year Mortality in elderly men in Finland, Italy, and the Nederlands: Longitudinal cohort study. BMJ 1997, 315, 13–17. [Google Scholar] [CrossRef]
- Karvonen, M.; Orma, E.; Keys, A.; Fidanza, F.; Brozek, J. Cigarette Smoking, Serum-Cholesterol, Blood-Pressure and Body Fatness. Observations In Finland. Lancet 1959, 492–494. [Google Scholar] [CrossRef]
- Keys, A.; Karvonen, M.J.; Fidanza, F. Serum-Cholesterol Studies in Finland. Lancet 1958, 2, 175–178. [Google Scholar] [CrossRef]
- Menotti, A.; Puddu, P.E.; Kafatos, A.G.; Tolonen, H.; Adachi, H.; Jacobs, D.R., Jr. Cardiovascular Mortality in 10 Cohorts of Middle-Aged Men Followed up 60 Years until Extinction: The seven Countries Study. J. Cardiovasc. Dev. Dis. 2023, 10, 201. [Google Scholar] [CrossRef]
- Puddu, P.E.; Piras, P.; Kafatos, A.; Adachi, H.; Tolonen, H.; Menotti, A. Competing Risks of Coronary Heart Disease Mortality versus Other Causes of Death in 10 Cohorts of Middle-Aged Men of the Seven Countries Study Followed for 60 Years to Extinction. J. Cardiovasc. Dev. Dis. 2023, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Bucheley, R.W.; Drake, R.M.; Breslow, L. Relationship of Amount of Cigarette Smoking to Coronary Heart Disease Mortality Rates in Men. Circulation 1958, 18, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, T.K.M.; Puska, P.; Berg, M.A.K.; Pokusajeva, S.; Moisejeva, N.; Uhanov, M.; Artemjev, A. Health- related Behaviours in the Republic of Karelia, Russia, and North Karelia, Finland. Int. J. Behav. Med. 1994, 1, 285–304. [Google Scholar] [CrossRef] [PubMed]
- YLE. Health Report: Abuse a “Big Problem” in Finland, Main Cause of Preventable Deaths. 30 December 2022. Available online: https://yle.fi (accessed on 23 July 2025).
- Manthey, J.; Probst, C.; Kilian, C.; Moskalewicz, J.; Sierosławski, J.; Karlsson, T.; Rehm, J. Unrecorded Alcohl Consumption in Seven European Union Countries. Eur. Addict. Res. 2020, 26, 316–325. [Google Scholar] [CrossRef]
- EUROSTAT. Alcohol Consumption Statistics. Statistics Explained. July 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Alcohol_consumption_statistics (accessed on 23 July 2025).
- Garcia, M.J.; McNamara, P.M.; Gordon, T.; Kannell, W.B. Morbidity and mortality in diabetics in the Framingham population. Sixteen-year follow-up study. Diabetes 1974, 23, 105–111. [Google Scholar] [CrossRef]
- Mayes, C.R.; Thompson, D.B. What Should We Eat? Biopolitics, Ethics, and Nutritional Scientism. J. Bioethical Inq. 2015, 12, 587–599. [Google Scholar] [CrossRef]
- Mayes, C. Healthy Eating Policy: Racial Liberalism, Global Connections and Contested Science. Food Ethics 2023, 8, 1. [Google Scholar] [CrossRef]
- Shintani, H.; Shintani, T. Effects of antidiabetic drugs that cause glucose excretion directly from the body on mortality. Med. Drug Discov. 2020, 8, 100062. [Google Scholar] [CrossRef]
- Antoniotti, E. Comè´Cambiata La Salute Degli Italiani 1861–2011: Centocinquant‘Anni.Quotidianosanita’.it. 16 March 2011. Available online: https://www.quotidianosanita.it/cronache/articolo.php?articolo_id=3269 (accessed on 23 July 2025).
- Liu, B.; Hu, Y.; Rai, S.K.; Wang, M.; Hu, F.B.; Sun, Q. Low-Carbohydrate Diet Macronutrient Quality and Weight Change. JAMA Netw. Open 2023, 6, e2349552. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.C.; Sedgmond, J.; Mizey, L.; Chambers, C.D.; Lawrence, N. Food addiction: Implications for the diagnosisi and treatment of overeating. Nutrients 2019, 11, 2086. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Pedley, A.; Hoffman, U.; Massaro, J.M.; Levy, D.; Long, M.T. Visceral and Intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: The Framingham Heart Study. Am. J. Med. 2018, 131, 684–692. [Google Scholar] [CrossRef]
- Manka, P. Liver, Heart, Death Can This Sequence Be Broken? Dig. Dis. Sci. 2023, 68, 3490–3491. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Bacopoulou, F.; Markousis-Mavrogenis, G.; Chrousos, G.; Charmandari, E. Cardiovascular Imaging in Obesity. Nutrients 2021, 13, 744. [Google Scholar] [CrossRef]
- Lemmens, H.J.; Bernstein, D.P.; Brodsky, J.B. Estimating Blood Volume in Obese and Morbidity Obese Patients. Obes. Surg. 2006, 16, 773–776. [Google Scholar] [CrossRef]
- Csige, I.; Ujvarosy, D.; Szabo, Z.; Lörincz, I.; Paragh, G.; Harangi, M.; Somodi, S. The impact of Obesity on the cardiovascular System. J. Diabetes Res. 2018, 2018, 3407306. [Google Scholar] [CrossRef]
- Stapleton, P.A.; James, M.E.; Goodwill, A.G.; Fresbee, J.C. Obesity and Vascular Dysfunction. Pathophysiology 2008, 15, 79–89. [Google Scholar] [CrossRef]
- Faizan, U.; Rouster, A.S. Nutrition and Hydration Requirements in Children and Adults. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutritionand hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Flatharta, T.O.; Flynn, A.; Mulkerrin, E.C. Heat-related chronic kidney disease mortality in the young and old: Differing mechanisms, potentially similar solutions? BMJ Evid. Based Med. 2019, 24, 45–47. [Google Scholar] [CrossRef]
- Gunanithi, K.; Sakthidasan, S. Serum Albumin levels in uncontrolled type II diabetes mellitus-An observational study. MedPulse. Int. J. Biochem. 2021, 20, 13–17. [Google Scholar]
- DiNicolantonio, J.J.; O´Keefe, J. Low-grade metabolic acidosis as a driver of chronic disease: A 21st century public health crisis. Open Heart 2021, 8, e001730. [Google Scholar] [CrossRef]
- Alpern, R.J.; Sakhaee, K. The clinical Spectrum of Chronic Metabolic Acidosis: Homeostatic Mechanisms Produce Significant Morbidity. Am. J. Kid. Dis. 1997, 29, 291–302. [Google Scholar] [CrossRef]
- Doar, J.W.H.; Cramp, D.G. The effects of Obesity and Maturity-Onset Diabetes Mellitus on L(+) Lactic Acid Metabolism. Clin. Sci. 1970, 39, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.O.; Hoogeveen, R.C.; Brancati, F.L.; Astor, B.C.; Ballantyne, C.M.; Schmidt, M.I.; Young, J.H. Association of Blood Lactate with type 2 diabetes: The Atherosclerosis Risk in Communities Carotid MRI Study. Int. J. Epidemiol. 2010, 39, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Chirumbolo, S.; Bertossi, D. Insights on the role of L-lactate as a signaling molecule in skin aging. Biogerontology 2023, 24, 709–726. [Google Scholar] [CrossRef] [PubMed]
- De-Cleva, R.; Cardia, L.; Veira-Carducci, A.; Greve, J.M.; Santo, M.A. Lactate can be a Marker of Metabolic Syndrome in Severe Obesity? ABCD. Arq. Bras. Cir. Dig. 2021, 34, e1579. [Google Scholar] [CrossRef]
- Re, R.N. Obesity-Related Hypertension. Ochsener J. 2009, 9, 133–136. [Google Scholar]
- Trayurn, P. Hypoxia and Adipose Tissue Function and Dysfunction in Obesity. Physiol. Rev. 2013, 93, 1–21. [Google Scholar] [CrossRef]
- Rodriguez, A.J.; Boonya-Ananta, M.T.; Gonzalez, M.; Du Le, V.N.; Fine, J.; Palacios, C.; McShane, M.J.; Cote´, G.L.; Ramella-Roman, J.C. Skin optical properties in the obese and their relation to body mass index: A review. J. Biomed. Opt. 2022, 27, 030902. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Shin, J.H. Association between D-dimer and long-term mortality in patients with acute severe hypertension visiting the emergency department. Cinical Hypertens. 2023, 29, 16. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.J.; Faerch, K. Estimating insulin sensitivity and beta cell function: Perspectives from the modern pandemics of obesity and type 2 diabetes. Diabetologia 2012, 55, 2863–2867. [Google Scholar] [CrossRef] [PubMed]
- Saunders, K.H.; Shukla, A.P.; Igel, L.I.; Kumar, R.B.; Aronne, L.J. Pharmacotherapy for Obesity. Endocrinol. Metab. Clin. N. Am. 2016, 45, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Guadamuz, J.S.; Shooshtari, A.; Qato, D.M. Global, regional and national trends in statin utilasation in high-income and low/middle-income countries, 2015–2020. BMJ Open 2022, 12, e061350. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, insulin Resistanc, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3611–3616. [Google Scholar] [CrossRef]
- Coucouls, A.P.; Daigle, C.R.; Arterburn, D.E. Long-term outcomes of metabolic/bariatric surgery in adults. BMJ 2023, 383, e071027. [Google Scholar] [CrossRef] [PubMed]
- Lardinois, C.K. Time for new Approach to Reducing Cardiovascular Disease: Is Limitation on Saturated Fat Meat Consumption Still Justified. Am. J. Med. 2020, 133, 1009–1010. [Google Scholar] [CrossRef]
- Lee, C.D.; Hardin, C.; Longo, D.L.; Ingelfinger, J.R. Nutrition in Medicine—A New Review Article Series. N. Engl. J. Med. 2024, 390, 1324–1325. [Google Scholar] [CrossRef]
- Blais, J.E.; Wie, Y.; Yap, K.K.W.; Alwafi, H.; Ma, T.T.; Brauer, R.; Lau, W.C.Y.; Man, K.K.C.; Siu, C.W.; Tan, K.C.B.; et al. Trends in Lipi-modifying agent use in 83 countries. Atherosclerosis 2021, 328, 44–51. [Google Scholar] [CrossRef]
- Kang, H.; Hong, S.H. Risk of Kidney Dysfunction from Polypharmacy among Older Patients: A Nested Case-Control Study of the South Korean Senior Cohort. Sci. Rep. 2019, 9, 10440. [Google Scholar] [CrossRef]
- Oosting, I.J.; Colombijn, J.M.T.; Kaasenbrood, L.; Liabeuf, S.; Laville, S.M.; Hooft, L.; Bots, M.; Verhaar, M.C.; Vernoij, R.W.M. Polypharmacy in Patients with CKD A Systematic Review and Meta-Analysis. Kidney360 2024, 5, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Viollet, B. Le nouvelles promesses de la metformine. Vers une meilleure comprehension de ses mechanismes d’action. Medicine/Sciences 2014, 30, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Staub, H. Übersichten.40 Jahre Insulin und intermediärer Stoffwechsel. Kli. Wschr. 1965, 42, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. The origin of type 2 diabetes medications. Br. J. Diabetes 2022, 22, 112–120. [Google Scholar] [CrossRef]
- Yamagushi, H.; Sekiguchi, N.; Hirano, A.; Oshima, A.; Imai, T. Metformin-associated Lactic Acidosis Induced by Excessive Acohol Consumption. Intern. Med. 2024, 63, 1745–1749. [Google Scholar] [CrossRef]
- Watanabe, C.K. Studies in the metabolic changes induced by administration of guanidine bases. II. The influence of guanidine upon urinary ammonia and acid excretion. J. Biol. Chem. 1918, 34, 51–63. [Google Scholar] [CrossRef]
- Watanabe, C.K. Studies in the metabolic changes induced by the administration of guanidine bases: VI. The influence of Guanidine Acidosis on the Fat Content of the Blood. J. Biol. Chem. 1922, 1, 195–200. [Google Scholar]
- Frank, E.; Northmann, M.; Wagner, A. Über Synthetisch Dargestellte Körper mit Insulin artiger Wirkung auf den Normalen und diabetischen Organismus. Kli. Wochenschr. 1926, 45, 2100–2107. [Google Scholar] [CrossRef]
- Banting, F.C.; Best, C.H. The internal secretion of the pancreas. J. Lab. Clin. Med. 1922, 7, 251–266. [Google Scholar]
- Calvert, E.G.B. Observations on the treatment of Diabetes By Synthalin. Lancet 1927, 5430, 649–651. [Google Scholar] [CrossRef]
- Anonymus. Synthalin in the treatment of Diabetes. Preliminary reports to the medical research council. Lancet 1927, 5427, 517–521. [Google Scholar] [CrossRef]
- Bodo, R.; Marks, A. The relation of synthalin to carbohydrate metabolism. J. Physiol. 1928, 65, 83–99. [Google Scholar] [CrossRef]
- Ringer, A.I.; Bilon, S.; Harris, M.M.; Landy, A. Synthalin. its use in the treatment of Diabetes. Arch. Int. Med. 1928, 41, 453–471. [Google Scholar] [CrossRef]
- Staub, H.; Küng, O. Zum.Synthalin Mechanismus. Klin. Woch. 1928, 7, 1365–1366. [Google Scholar] [CrossRef]
- Frank, E.; Nothmann, M.; Wagner, A. Über die experimentelle und klinische Wirkung des Dodekamethylendiguanids (Synthalin B). Klin. Woch. 1928, 42, 1996–2000. [Google Scholar] [CrossRef]
- Bischoff, F.; Sahyun, M.; Long, L. Guanidine Structure and Hypoglycemia. J. Biol. Chem. 1929, 81, 325–349. [Google Scholar] [CrossRef]
- Blatherwick, N.R.; Sahyun, M.; Hill, E. Some effects of Synthalin on Metabolism. J. Biol. Chem. 1927, 75, 671–683. [Google Scholar] [CrossRef]
- Anonymus. Insulin and Synthalin. Nature 1928, 3039, 151–153. [Google Scholar]
- Werner, E.A.; Bell, J. CXXVII—The preparation of Guanidine by the interaction of Dicyanodiamide and Ammonium Thiocyanate. J. Chem. Soc. Trans. 1920, 117, 1133–1136. [Google Scholar] [CrossRef]
- Werner, E.A.; Bell, J. The Preparation of methylguanidine, and of BB-dimethylguanidine by the interaction of dicyanodiamid, and methylammonium and dimethylammonium chlorides respectively. J. Chem. Soc. Trans. 1922, 121, 1790–1794. [Google Scholar] [CrossRef]
- Hesse, E.; Taubmann, G. Die Wirkung des Biguanids und seiner Derivate auf den Zuckerstoffwechsel. NNaunyn-Schmiedebergs Arch. Für Exp. Pathol. Und Pharmakol. 1929, 142, 290–308. [Google Scholar] [CrossRef]
- Minot, A.S.; Dodd, K.; Saunders, J.M. The acidosis of guanidine intoxication. J. Clin. Investig. 1934, 13, 917–932. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, J. Effect of guanidine and synthalin on the citric Acid Metabolism. Acta Medica Scand. 1946, 125, 82–94. [Google Scholar] [CrossRef]
- Goldner, M.G. Oral hypoglycemic agents Past and Present. AMA Arch. Intern. Med. 1958, 102, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.C. Hydropic Degeneration of the aCells of The Pancreatic Islets Produced by Synthalin A. J. Path. Bact. 1952, 56, 575584. [Google Scholar]
- Ferner, H.; Runge, W. Synthalin A as elective Mitotic Poison Acting on aCells of the Islet of Langerhans. Science 1955, 122, 420. [Google Scholar] [CrossRef]
- Bloom, A.; Richards, J.G. Phenformin as Adjuvant Oral Therapy in Diabetes. Br. Med. J. 1961, 1, 1796–1799. [Google Scholar] [CrossRef]
- Krall, L.P.; Camerini-Davalos, R. Clinical Trials with DBI, a New Nonsulfonylurea Oral Hypoglycemic Agent. AMA Archiv. Int. Med. 1958, 102, 25–31. [Google Scholar] [CrossRef]
- Williams, R.H.; Tanner, D.C.; Odell, W.D. Hypoglycemic Actions of Phenethyl-Amyl-, and Isoamyl-Diguanide. Diabetes 1958, 7, 87–92. [Google Scholar] [CrossRef]
- Unger, G.; Freedman, L.; Shapiro, S.L. Pharmacological Studies of a New Oral Hypoglycemic Drug. Proc. Soc. Exp. Biol. Med. 1957, 95, 190–192. [Google Scholar] [CrossRef]
- Tranquada, R.E.; Kleeman, C.; Brown, J. Some effects of Phenylmethylbiguanide on Human Hepatic Metabolism as Measured by Hepatic Vein Catheterization. Diabetes 1960, 9, 207–214. [Google Scholar] [CrossRef]
- Walker, R.S.; Linton, A.; Thomson, W.S.T. Mode of action and Side effects of Phenformin Hydrochloride. BMJ 1960, 2, 1567–1569. [Google Scholar] [CrossRef]
- Grodsky, G.M.; Karam, J.H.; Pavlatos, F.C.; Forsham, P.H. Reduction by Phenformin of excessive Insulin Levels after glucose loading in Obese Diabetic Subjectes. Metabolism 1963, 12, 278–286. [Google Scholar]
- Beaser, S. Therapy of Diabetes Mellitus with Combinations of Drugs Given Orally. N. Engl. J. Med. 1958, 259, 1207–1210. [Google Scholar] [CrossRef]
- Walker, R.S. Preliminary Observations on Phenethyldiguanide. BMJ 1959, 2, 405–406. [Google Scholar] [CrossRef]
- Bratusch-Marrain, P.R.; Korn, A.; Waldhäusl, W.K.; Gasic, S.; Nowotny, P. Effect of Buformin on Splanchnic Carbohydrate and Substrate Metabolism in Healthy Man. Metabolism 1981, 30, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Phillps, P.J.; Scicchitano, R.; Clarkson, A.R.; Gilmore, A.R. Metformin-associated lactic acidosis. Aust. N. Z. J. Med. 1978, 8, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, A.; Stockley, C.; Keal, J.; Rolan, P.; Bochner, F. Reduction of Metformin renal tubular secretion by cimetidine in man. J. Clin. Pharmacol. 1987, 231, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Ohara, S.; Komatsu, R.; Matsuyama, T. Short-term effect of buformin, a biguanide, on insulin sensitivity, soluble fraction of tumor necrosis factor receptor and serum lipids in overweight patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2004, 66, 133–138. [Google Scholar] [CrossRef]
- Misbin, R.I. Phenformin-Associated Lactic Acidosis: Pathogenesis and Treatment. Ann. Int. Med. 1977, 87, 591–595. [Google Scholar] [CrossRef]
- Knatterud, G.; Meinert, C.L.; Klimt, C.R.; Osborne, R.K.; Martin, D.B. Effects of Hypoglycemic Agents on Vascular Complications in Patients With Adult-Onset Diabetes. JAMA 1971, 217, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, H.; Seitz, W. Weitere Ergebnisse der Diabetesbehandlung mit bluzuckersenkenden Biguaniden. Münch. Med. Wschr. 1958, 100, 1849–1851. [Google Scholar] [PubMed]
- Sterne, J. Du nouveau dans les antidiabetiques. La NNdimethylamino guanyl guanidine (NNDG). Maroc. Med. 1957, 36, 1295–1296. [Google Scholar]
- Clarke, B.F.; Duncan, U.P. Comparison of chlorpropamide and metformin treatment on weight and blood glucose response and uncontrolled obese diabetics. Lancet 1968, 1, 123–126. [Google Scholar] [CrossRef]
- Lebacq, E.G.; Tirzmalis, A. Metformin and Lactic Acidosis. Lancet 1972, 12, 314–315. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study Group. Prospective diabetes study group 16. Overview of 6 years therapy of type 2 diabetes: A progressive disease. Diabetes 1995, 44, 1249–1258. [Google Scholar] [CrossRef]
- De Fronzo, R.; Goodmann, A. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef]
- Guriguian, J.; Green, L.; Misbin, R.J.; Stadel, B.; Fleming, G.A. Efficacy of Metformn in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 1996, 334, 269. [Google Scholar]
- Misbin, R.I.; Green, L.; Stadel, B.V.; Gueriguian, J.L.; Gubbi, A.; Fleming, G.A.N. Lactic acidosis in patients with diabetes treated with metformin. N. Engl. J. Med. 1998, 338, 265–266. [Google Scholar] [CrossRef]
- Campbell, R.K.; White, J.R.; Saulie, B.A. Metformin: A new Oral Biguanide. Clin. Ther. 1996, 18, 360–370. [Google Scholar] [CrossRef]
- Krishnamurthy, M.; Sahouria, J.J.; Desai, R.; Caguiat, J. Buformin induced lactic acidosis-A symptom of Modern Health Care Malady. J. Am. Geriatr Soc. 2004, 52, 1785. [Google Scholar] [CrossRef] [PubMed]
- Fingl, E.; Woodbury, D.M. General Principles. 1. Pharmacokinetics 2–26 pp In The Pharmacological Basis of Therapeutics, 5th ed.; Goodman, L.S., Gilman, A., Eds.; Macmillan Publishing Inc: New York, NY, USA.
- Sambol, N.C.; Chiang, J.; O´Conner, M.; Liu, C.Y.; Lin, E.T.; Goodman, A.M.; Benet, L.Z.; Karam, J.H. Pharmacokinetics and Pharmacodynamics of Metformin in Healthy Subjects and Patients with Non-Insulin-Dependent Diabetes Mellitus. J. Clin. Pharmacol. 1996, 36, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Sombol, N.C.; Chiang, J.; Lin, E.T.; Goodman, A.M.; Liu, C.h.L.; Benet, L.Z.; Cogan, M.G. Kidney Function and Age Are Both Predictors of Pharmacokinetics of Metformin. J. Clin. Pharmacol. 1995, 35, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Lintz, W.; Berger, W.; Aenishaenslin, W.; Kutova, V.; Baerlocher, C.h.; Kapp, J.P.; Beckmann, R. Buthylbiguanide Concentration in Plasma, Liver, and intestine after intravenous and Oral Administration to man. Eur. J. Clin. Pharmacol. 1974, 7, 433–448. [Google Scholar] [CrossRef]
- Alkalay, D.; Khermani, L.; Wagner, W.H.; Bartlett, M.F. Pharmacokinetics of Phenformin in Man. J. Clin. Pharmacol. 1975, 15, 446–448. [Google Scholar] [CrossRef]
- Pentikäinen, P.J.; Neuvonen, P.J.; Penttilä, A. Pharmacokinetics of Metformin After intravenous and Oral Administration to Man. Eur. J. Clin. Pharmacol. 1979, 16, 185–202. [Google Scholar] [CrossRef]
- Le Couteur, D.G.; Fraser, R.; Hilmer, S.; Rivory, L.P.; McLean, A.J. The Hepatic Sinusoid in Aging and Cirrhosis. Effects on Hepatic Substrate Disposition and Drug Clearance. Clin. Pharmacokinet. 2005, 44, 187–200. [Google Scholar] [CrossRef]
- Gormensen, L.C.; Sundelin, E.I.; Jensen, J.B.; Vendelbo, M.H.; Jakobsen, S.; Munk, O.L.; Christensen, M.M.H.; Broesen, K.; Froekiaer, J.; Jessen, N. In vivo Imaging of Human C11-Metformin in Peripheral Organs: Dosimetry, Biodistribution, and Kinetic Analyses. J. Nucl. Med. 2016, 57, 1920–1926. [Google Scholar] [CrossRef]
- Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Investig. 2007, 117, 1422–1431. [Google Scholar] [CrossRef]
- Christensen, M.M.H.; Hoejnd, K.; Hother-Nielsen, O.; Stage, T.B.; Damkler, P.; Beck-Nielsen, H.; Brosen, K. Steady-state pharmacokinetics of metformin is independent of OCT1 genotype in healthy volunteers. Eur. J. Clin. Pharmacol. 2015, 71, 691–697. [Google Scholar] [CrossRef]
- Garg, P.K.; Lokitz, S.J.; Nazih, R.; Garg, S. Biodistribtution and Radiation Dosimetry of C11-Nicotine from Whole-Body PET Imaging in Humans. J. Nucl. Med. 2017, 58, 473–478. [Google Scholar] [CrossRef]
- Gierloeff, T.; Jakobsen, S.; Nahimi, A.; Munk, O.L.; Bender, D.; Alstrup, A.K.O.; Vase, K.H.; Hansen, S.B.; Brooks, D.J.; Berghammer, P. In Vivo Imaging of Human Acetylcholinesterase Density in Peripheral Organs using C11-Donezepezil: Dosimetry, Biodistribution, and Kinetic Analyses. J. Nucl. Med. 2014, 55, 1818–1824. [Google Scholar]
- Gierloeff, T.; Fedorova, T.; Knudsen, K.; Munk, O.L.; Nahimi, A.; Jacobsen, S.; Danielsen, E.H.; Terkelsen, A.J.; Hansen, J.; Pavese, N.; et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with C11-donepezil PET. Brain 2015, 138, 653–663. [Google Scholar]
- Chou, C.-H. Uptake and Dispersion of Metformin in the Isolated Perfused Rat Liver. J. Pharm. Pharmacol. 2000, 52, 1011–1016. [Google Scholar] [CrossRef]
- Bonora, E.; Cigolini, M.; Bosello, O.; Zancanaro, C.; Capretti, L.; Zavaroni, I.; Coscelli, C.; Butturini, U. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr. Med. Res. Opin. 1984, 9, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Sum, C.F.; Webster, J.M.; Johnson, A.B.; Catalano, C.; Cooper, B.G.; Taylor, R. The effect of intravenous Metformin on Glucose Metabolism During Hyperglicemia in Type 2 Diabetes. Diabetes Med. 1992, 9, 61–65. [Google Scholar] [CrossRef] [PubMed]
- McCreight, L.J.; Stage, T.B.; Connelly, P.; Lonergaum, M.; Nielsen, F.; Prelin, C.; Adamsky, J.; Broesen, K.; Pearson, E.R. Pharmacokinetics of metformin in patients with gastrointestinal intolerance. Diabetes Obes. Metab. 2018, 20, 1593–1601. [Google Scholar] [CrossRef]
- Sterne, J. The Present State of Knowledge on the Mode of Action of the Antidiabetic Diguanides. Metabolism 1964, 13, 781–798. [Google Scholar] [CrossRef]
- Penicaud, L.; Hitier, Y.; Ferre, P.; Girard, J. Hypoglycemic effect of metformin in genetically obese(fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem. J. 1989, 262, 881–885. [Google Scholar] [CrossRef]
- Sahi, J.; Grepper, S.; Smith, C. Hepatocytes as a Tool in drug metabolism, Transport and Safety Elimination in Drug Discvery. Curr. Drug Iscovery Technol. 2010, 7, 188–198. [Google Scholar]
- Bailey, J.C. Metformin and intestinal glucose handling. Diabetes Metab. Rev. 1995, 11 (Suppl. 1), S23–S32. [Google Scholar] [CrossRef]
- Wilcock, C.; Bailey, C.J. Reconsideration of inhibitory effect of metformin on intestinal glucose absorption. J. Pharm. Pharmacol. 1991, 43, 120–121. [Google Scholar] [CrossRef]
- Christensen, M.M.H.; Hojhund, K.; Hother-Nielsen, O.; Stage, T.B.; Damkier, P.; Beck-Nielsen, H.; Brosen, K. Endogenous glucose production increase in response to metformin treatment in the glycogen-depleted state in humans:a randomized trial. Diabetologia 2015, 58, 2494–2502. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xie, C.; Wu, H.; Jones, K.I.; Horowitz, M.; Rayner, C.K. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes. Metab. 2017, 119, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Horakova, O.; Kroupova, P.; Bardova, K.; Buresova, J.; Janowska, P.; Kopecky, J.; Rossmeisl, M. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci. Rep. 2019, 9, 6156. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.W. Metformin:60-year odyssey with the journey still continuing-a personal commentary from Professor Ian Campbell. Curr. Med. Res. Opin. 2022, 38, 55–58. [Google Scholar] [CrossRef]
- Ikeda, T.; Iwata, K.; Murakami, H. Inhibition Effect of Metformin on Intestinal Glucose Absorption in the perfused Rat Intestine. Biochem. Pharmacol. 2000, 59, 887–890. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.; DeFronzo, R.A. Is The time To change the Type 2 Diabetes Treatment Paradigm? Yes! GLP-1 Ras Should Replace Metformin in the Type 2 Diabetes Algorithm. Diabetes Care 2017, 40, 1121–1127. [Google Scholar] [CrossRef]
- Tobar, N.; Rocha, G.Z.; Santos, A.; Guadagnini, D.; Assalin, H.B.; Camargo, J.A.; Goncalves, A.E.S.S.; Pallis, F.R.; Oliveira, A.G.; Rocco, S.A.; et al. Metformin acts in the gut and induces gut-liver cross-talk. PNAS 2023, 120, e2211933120. [Google Scholar] [CrossRef]
- Lalau, J.D.; Race, J.-M.; Brinquin, L. Lactic Acidosisin MetforminTherapy. Diabetes Care 1998, 21, 1360–1362. [Google Scholar]
- Lalau, J.D.; RaceJ-MAndrelli, P.; Lacroix, C.; Canarelli, J.P. Metformin retention Independent of Renal Failure in Intestinal Occlusion. Diabetes Metab. 2000, 27, 24–28. [Google Scholar]
- Bailey, C.J.; Gwilt, M. Diabetes, Metformin and Clinical Course of COVID-19: Outcomes, Mechanisms and Suggestions on the Therapeutic Use of Metformin. Front. Pharmacol. 2022, 13, 78459. [Google Scholar] [CrossRef] [PubMed]
- Lalau, J.D.; Kajbal, F.; Protti, A.; Christensen, M.M.; De Bore, M.-E.; Wirnsperger, N. Metformin-associated lactic-acidosis (MALA): Moving towards a new paradigm. Diabetes Obes. Metab. 2017, 19, 1502–1512. [Google Scholar] [CrossRef]
- Bronden, A.; Alber, A.; Rohde, U.; Rehfeld, J.F.; Holst, J.J.; Vilsboell, T.; Knop, F.K. Single-dose Metformin enhances Bile-Acid-induced Glucagon-like Peptide-1 Secretion in Patients with type-2 Diabetes. J. Clin. Endocrinol. Metab. 2017, 102, 4153–4162. [Google Scholar] [CrossRef]
- Ritzel, U.; Fromme, A.; Otteleben, M.; Leonhardt, U.; Ramadori, G. Release of glucagon-like peptide-1(GLP-1) by carbohydrates in the perfused rat ileum. Acta Diabetol. 1997, 34, 18–21. [Google Scholar] [CrossRef]
- Raddatz, D.; Nolte, W.; Roßbach, C.; Leonhardt, U.; Buchwald, A.; Scholz, K.H.; Ramadori, G. Measuring the effect of a Study Meal on Portal Concentrations of Glucagon-Like Peptide-1 (GLP-1) in Non Diabetic and Diabetic Patients with Liver Cirrhosis: Transjugular Intrahepatic Portosystemic Stent Shunt(TIPSS) as a New Method for Metabolic Measurement. Exp. Clin. Endocrinol. Diabetes 2008, 116, 461–467. [Google Scholar]
- Li, B.; Hu, Y.; Wang, G.; Liu, L. The effect of exenatide on fasting bile acids in newly diagnosed type 2 diabetes mellitus patients, a pilot study. BMC Pharmacol. Toxicol. 2020, 21, 44. [Google Scholar] [CrossRef] [PubMed]
- Coll, A.P.; Chen, M.; Taskar, P.; Rimmington, D.; Patel, S.; Tadross, J.A.; Cimino, I.; Yang, M.; Welsh, P.; Virtue, S.; et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2019, 578, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Kincald, J.W.R.; Rimmington, D.; Tadross, J.A.; Cimino, I.; Zwetkova, I.; Kaser, A.; Richards, P.; Patel, S.; O´Rahilly, S.; Coll, A.P. The gastrointestinal tract is a major source of the acute metformin-stimulated rise in GD15. Sci. Rep. 2024, 14, 1899. [Google Scholar] [CrossRef]
- Scott, B.; Day, E.A.; Lynch, L.; O´Brien, K.L.; Scanlan, J.; Cromwell, G.; Scannal, A.L.; Mc Donnell, E.; Finlay, D.K. Metformin and Feeding increase levels of appetite-suppressing metabolite Lac-Phe in humans. Nat. Metab. 2024, 6, 651658. [Google Scholar] [CrossRef]
- Petakh, P.; Kamyshna, I.; Kamishnyl, A. Effects of metformin on the gut microbiota: A systematic review. Mol. Metab. 2023, 77, 101805. [Google Scholar] [CrossRef]
- Larsson, A.; Ericson, U.; Jonsson, D.; Miari, M.; Athanassiadis, P.; Baldanzi, G.; Brunkwall, L.; Hellstrand, S.; Klinge, B.; Melander, O.; et al. New Connections of Medication use and polypharmacy with the gut microbiota composition and functional potential in a large population. Sci. Rep. 2024, 14, 23723. [Google Scholar] [CrossRef] [PubMed]
- Cubeddu, L.X.; Boenisch, H.; Goethert, M.; Moldering, S.G.; Racke, K.; Ramadori, G.; Miller, K.J.; Schwoerer, H. Effects of Metformin on Intestinal 5-Hydroxytriptamine (5-HT) Release on 5-HT3-receptors. Naunyn Schmiedbergers Arch. Pharmacol. 2000, 361, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chung, J.K.; Kim, B.T. Relationship between gastrointestinal F-18-fluorodoxyglucose accumulation and gastrointestinal symptoms in whole-body PET. Clin. Positron. Imaging 1999, 2, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Gontier, E.; Fourme, E.; Wartski, M.; Blondet, C.; Bonardel, G.; Le Stanc, E.; Mantzarides, M.; Foehrenbach, H.; Pecking, A.-P.; Alberini, J.-L. High and typical F18-FDG bowel uptake in patients treated with metformin. Eur. J. Med. Mol. Imaging 2008, 35, 95–99. [Google Scholar] [CrossRef]
- Morita, Y.; Nogami, M.; Sakaguchi, K.; Okada, Y.; Hirota, Y.; Sugawara, K.; Tamori, Y.; Zeng, F.; Murokami, T.; Ogawa, W. Enhanced Release of Glucose into Intraluminal Space of the Intestine Associated With Metformin Treatment as Revealed by [18F] Fluorodeoxyglucose PET-MRI. Diabetes Care 2020, 43, 1796–1802. [Google Scholar] [CrossRef]
- Özülkur, T.; Özülkur, F.; Mert, M.; Özpacaci, T. Clearance of high intestinal F18-FDG uptake associated with metformin after stopping the drug. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1011–1017. [Google Scholar] [CrossRef]
- Schreuder, N.; Klarenbeek, H.; Vendel, B.N.; Jager, P.L.; Kosterink, J.G.W.; van Puijenbroek, E.P. Discontinuation of metformin to prevent metformin-induced high colonic FDG uptake: Is 48 h sufficient? Ann. Neclear Med. 2020, 34, 833–839. [Google Scholar] [CrossRef]
- Massollo, M.; Marini, C.; Brignone, M.; Emionite, B.; Salani Briondato, M.; Capitano, S.; Fitz, F.; Democrito, A.; Amaro, A.; Morbelli, S.; et al. Metformin Temporal and Localized Effects on Gut Glucose Metabolism Assessed Using F18-DG PET in Mice. J. Nucl. Med. 2013, 54, 259–266. [Google Scholar] [CrossRef]
- Tu, D.G.; Chen, C.-R.; Wang, Y.-W.; Tu, C.-W.; Huang, Y.C. Bowel-cleansing methods affecting PET-CT Image interpretation. Nucl. Med. Commun. 2011, 32, 570–574. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Chen, J.-H.; Tsui, C.-C.; Chou, H.-H.; Cheng, R.-H.; Chiu, J.-S. Use of Laxative-augmented Contrast Medium in the Evaluation of Colorectal Foci at FDG PET. Radiology 2011, 259, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, R.; Manabe, N.; Ayaki, M.; Tanikawa, T.; Fujita, M.; Ono, Y.; Fujiwara, H.; Suehiro, M.; Monobe, Y.; Kato, K.; et al. Increased Colonic Fluorodeoxyglucose Uptake in Melanosis Coli-A Case Series of Three Patients. Gastro. Hep. Adv. 2022, 1, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Czyzyk, A.; Tawcki, J.; Sadowsky, J.; Ponnikowska, I.; Szezepanik, Z. Effect of biguanides on intestinal absorption of glucose. Diabetes 1968, 17, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Berchtold, P.; Bolli, P.; Arbenz, U.; Keiser, G. Intestinale Absorptionsstörung infolge Metformin behandlung (Zur Frage der Wirkungsweise der Biguanide). Diabetologia 1969, 5, 405–412. [Google Scholar] [CrossRef]
- Paleari, L.; Burhenne, J.; Weiss, J.; Foersch, S.; Roth, W.; Parodi, A.; Gnant, M.B.; Bachleitner-Hofmann, T.; Scherer, D.; Ulrich, C.M.; et al. High Accumulation of Metformin in Colonic Tissue of Subjects With Diabetes or the Metabolic Syndrome. Gastroenterology 2018, 154, 1543–1545. [Google Scholar] [CrossRef]
- Madison, L.L. Role of insulin in the hepatic Handling of glucose. Arch. Int. Med. 1969, 123, 284–292. [Google Scholar] [CrossRef]
- Balks, H.-J.; Jungermann, K. Regulation of peripheral insulin/glucagon levels by rat liver. Eur. J. Biochem. 1984, 141, 645–650. [Google Scholar] [CrossRef]
- Guzelian, P.H.; Boyer, J.L. Glucose reabsorption from bile. J. Clin. Investig. 1974, 53, 526–535. [Google Scholar] [CrossRef]
- Infante, M.; Leoni, M.; Caprio, M.; Fabbri, A. Long-term Metformin therapy and Vitamin B12 deficiency: An association to bear in mind. World J. Diabetes 2021, 12, 916–931. [Google Scholar] [CrossRef]
- Wijnen, J.C.F.; Van De Riet, I.R.; Lijfering, W.M.; Van Der Meer, F.J.M. Metformin use decreases the anticoagulant effect of phenprocoumon. J. Thromb. Haemost. 2014, 12, 887–890. [Google Scholar] [CrossRef]
- Baker, E.H.; Sandle, G.I. Complications of Laxative Abuse. Ann. Rev. Med. 1996, 47, 127–134. [Google Scholar] [CrossRef]
- Hart, S.L.; McColl, I. The effect of the laxative oxyphenisatin on the intestinal absorption of glucose in rat and man. Br. J. Pharmac. Chemother. 1968, 32, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Sturtzel, B.; Dietrich, A.; Wagner, K.H.; Gisinger, C.; Elmafda, I. The status of vitamins B6, B12, Folate, and of homocysteine in Geriatric home residents receiving laxatives or dietary fiber. J. Nutr. Health 2010, 14, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, H.; Yamada, U. Iron deficiency anemia induced by magnesium overuse: A case report. Biopsychosoc. Med. 2019, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.E.; Takkinen, S.; Johansson, B.; Dotevall, G.; Melander, A.; Berg, S. McClearn Laxative treatment elevates plasma homocysteine: A study on a population-based Swedish sample of old people. Eur. J. Clin. Pharmacol. 2004, 60, 45–49. [Google Scholar]
- Kelley, C.J.; Verdegaal, A.A.; Anderson, B.W.; Shaw, W.L.; Bencivenga-Barry, N.A.; Fogga-Stognew, E.; Goodman, A.L. Metformin inhibits Digestive Proteases and Impairs Protein Digestion in Mice. J. Bil. Chem. 2023, 299, 105363. [Google Scholar] [CrossRef]
- Han, Y.; Yun, C. Metformin Inhibits Na+/H+Exchanger NHE3 Resulting in Intestinal Water Loss. Front. Physiol. 2022, 13, 867244. [Google Scholar] [CrossRef]
- Naz, N.; Malik, I.A.; Sheikh, N.; Ahmad, S.; Kahn, S.; Blaschke, M.; Schultze, F.; Ramadori, G. Ferroportin-1 is a nuclear negative acute-phase protein in rat liver: A comparison with other iro-transport proteins. Lab. Investig. 2012, 92, 842–856. [Google Scholar] [CrossRef]
- Ahmad, S.; Moriconi, F.; Naz, N.; Sultan, S.; Sheikh, N.; Ramadori, G.; Malik, I.A. Ferritin L and Ferritin H are differentially located within hepatic and extra hepatic organs under physiological and acute-phase conditions. Int. J. Clin. Exp. Pathol. 2013, 6, 622–629. [Google Scholar]
- Vidon, N.; Chaussade, S.; Noel, M.; Franchisseur, C.; Huchet, B.; Bernier, J.J. Metformin in the digestive tract. Diabetes Res. Clin. Pract. 1988, 4, 223–229. [Google Scholar] [CrossRef]
- Ghosal, S.; Ghosal, S. The Side Effects of Metformin-A Review. J. Diabetes Metab. Disord. 2019, 6, 030. [Google Scholar] [CrossRef] [PubMed]
- Wickham, R.J. Revisiting the physiology of Nausea and vomiting-challenging the paradigma. Support. Care Cancer 2019, 28, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Caspary, W.F.; Creutzfeldt, W. Inhibition of Bile salt absorption by blood sugar lowering biguanides. Diabetologia 1975, 11, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Scarpello, J.H.B.; Hodgson, E.; Howlett, H.C.S. Effect of Metformin on Bile salt Circulation and Intestinal Motility in Type 2 Diabetes Mellitus. Diabet. Med. 1998, 15, 651–656. [Google Scholar] [CrossRef]
- Sansome, D.J.; Xie, C.; Veedfald, S.; Horowitz, M.; Rayner, C.K.; Wu, T. Mechanisms of glucose-lowering by metformin in type 2 diabetes: Role of bile acids. Diabetes Obes. Metab. 2019, 22, 141–148. [Google Scholar] [CrossRef]
- Metry, M.; Krug, S.A.; Karra, V.K.; Kane, M.A.; Fink, J.C.; Shu, Y.; Wang, H.; Polii, J.E. Differential effects of metformin-mediated BSEP repression on pravastatin and bile acid pharmacokinetics in humans: A randomized controlled trial. Clin. Transl. Sci. 2022, 15, 2468–2478. [Google Scholar] [CrossRef]
- Nakajima, A.; Ishizaki, S.; Matsuda, K.; Kurosu, S.; Taniguchi, S.; Gilberg, P.G.; Mattsson, J.P.; Hasumuma, T.; Camillen, M. Impact of elobixibat on serum and fecal bile acid levels and constipation symptoms in patients with chronic constipation. J. Gastroenterol. Hepatol. 2022, 37, 883–890. [Google Scholar] [CrossRef]
- Spiller, R. Inhibiting glucose absorption to treat constipation. Lancet Gastroenterol. Hepatol. 2018, 3, 588–589. [Google Scholar] [CrossRef]
- Chu, N.; Ling, J.; Jie, H.; Leung, K.; Poon, E. The potential role of lactulose pharmacotherapy in the Treatment and prevention of diabetes. Front. Endocrinol. 2022, 13, 956203. [Google Scholar] [CrossRef]
- Landin-Wilhelmsen, K. Metformin and blood pressure. J. Clin. Pharm. Ther. 1992, 17, 75–79. [Google Scholar] [CrossRef]
- Gudmundsdottir, H.; Aksnes, H.; Heldal, K.; Krogh, A.; Froyshov, S.; Rudberg, N.; Os, I. Metformin and antihypertensive therapy with drugs blocking the renin angiotensin system, a cause of concern? Clin. Nephrol. 2006, 66, 380–385. [Google Scholar] [CrossRef]
- Hashimoto, H.; Nomura, N.; Shoda, W.; Isobe, K.; Kikuchi, H.; Yamamoto, K.; Fujimaru, T.; Ando, F.; Mori, T.; Okado, T.; et al. Metformin Increases urinary sodium excretion by reducing phosphorylation of the sodium-chloride cotransporter. Metabolism 2018, 85, 23–31. [Google Scholar] [CrossRef]
- Mueller, L.; Moser, M.; Prazak, J.; Fuster, D.G.; Schefold, J.C.; Zuercher, P. Metformin’s Role in Hyperlactatemia and Lactic Acidosis in ICU Patients: A Systematic Review. Pharmacology 2023, 108, 213–223. [Google Scholar] [CrossRef]
- Czyzyk, K.A.; Lao, B.; Bartosiewicz, W.; Szczepanik, Z.; Orlowska, K. The Effect of Short-Term Administration of Antidiabetic Biguanide Derivatives On The Blood Lactate Levels in Healthy Subjects. Diabetologia 1978, 2, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Luft, D.; Schmülling, R.M.; Eggstein, M. Lactic acidosis in biguanide-treated diabetics. A review of 330 cases. Diabetologia 1978, 14, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Innerfield, J.R. Metformin-associated mortality in US Studies. N. Engl. J. Med. 1996, 334, 1611–1612. [Google Scholar] [PubMed]
- Stadei, B.V.; Guerigulian, J.; Fleming, G.A. Metformin-associated lactic acidosis. N. Engl. J. Med. 1996, 334, 1613. [Google Scholar]
- Unger, R.H.; Madison, L.L.; Carter, N.W. Tolbutamide-Phenformin in Ketoacidosis-Resistant Patients. JAMA 1960, 174, 2132–2136. [Google Scholar] [CrossRef]
- Cornfield, J. The university Group Diabetes Program. A Further Statistical Analysis of the Mortality Findings. JAMA 1971, 217, 1676–1687. [Google Scholar] [CrossRef]
- Palmer, J.P. Farewell to Phenformin for treating diabetes Mellitus. Ann. Int. Med. 1975, 83, 567–568. [Google Scholar]
- William, D.A.; Marples, J. Biguanides and Lacticacidosis. Lancet 1977, 309, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, E.; Mathieu, S.; Ball, A. Metformin associated lactic acidosis. BMJ 2009, 339, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Blough, B.; Moreland, A.; Mora, A. Metformin-induced lactic acidosis with emphasis on the anion gap. Proc. (Bayl. Univ. Med. Cent.) 2015, 28, 31–33. [Google Scholar] [CrossRef]
- Pena Porta, C.M.; Villafuerte Ledesma, H.M.; DEVera Floristan, C.V.; Ferrer Dufol, A.; Salvador Gomez, T.; Alvarez Lipe, R. Incidence, factors related to presentation, course and mortality of metformin-associated lactic acidosis in the healthcare area of a tertiary hospital. Nefrologia 2019, 39, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Faggian, G.; Cesaro, A.; Faggian, R.; Del Piano, C.; Vitagliano, A.; Del Piano, D.; Salzano, M.; Diglio, A.; Faggian, A. Insufficienza renale acuta, acidosi lattica e metformina: Due casi clinici e review della letteratura. G. Ital. Nefrol. 2023, 3, 1–8. [Google Scholar]
- Cheng, X.; Liu, M.Y.-M.; Li, H.; Zhang, X.; Lei, F.; Quin, J.J.; Chen, Z.; Deng, K.Q.; Lin, L.; Chen, M.-M.; et al. Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020, 32, 537–547. [Google Scholar] [CrossRef]
- Vordoni, A.; Theofilis, P.; Vlachopanos, G.; Koukoulaki, M.; Kalaitzidis, R.G. Metfromin-associated lactic acidosis and acute kidney injury in the era of COVID-19. Front. Biosci. Sch. 2021, 13, 202–207. [Google Scholar] [CrossRef]
- Takayama, K.; Obata, Y.; Maruo, Y.; Yamaguchi, H.; Kosugi, M.; Irie, Y.; Hazama, Y.; Yasuda, T. Metformin-associated Lactic Acidosis with Hypoglycemia during Covid-19 Pandemic. Intern. Med. 2022, 61, 2333–23337. [Google Scholar] [CrossRef]
- Donelly, L.A.; Morris, A.D.; Pearson, E.R. Adherence in patients transferred from immediate release metformin to a sustained release formulation: A population-based study. Diabetes Obes. Metab. 2009, 11, 338–342. [Google Scholar] [CrossRef]
- Rashid, M.; Warraich, N.Y.; Laique, T.; Shujaat, K.; Zawar, S.; Munir, A. Reasons of NON-Compliance to metformin among type 2 diabetics attending diabetic clinic in Lahore. J. Akhtar Saeed Med. Dent. Coll. 2019, 1, 111–116. [Google Scholar] [CrossRef]
- Christofides, E.A. Practical Insight Into Improving Adherence to Metformin Therapy in Patients With Type 2 Diabetes. Clin. Diabetes J. Org. 2019, 37, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.A.; Gonzalez, J.S.; Tripputi, M.T.; Dagogo-Jack, S.; Matulik, M.J.; Montez, M.G.; Tadros, S.; Edelstein, S.L. Long-term metformin adherence in the Diabetes Prevention Program Outcomes Study. BMJ Open Diab. Res. Care 2020, 8, e001537. [Google Scholar] [CrossRef] [PubMed]
- UKPDS (33). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- UKPDS (34). Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- Heden, T.A.; Liu, Y.; Kanaley, J.A. Exercise Timing and Blood Lactate Concentration in Individuals With Type 2 Diabetes. Appl. Physiol. Nutr. Metab. 2017, 42, 732–737. [Google Scholar] [CrossRef]
- Tapia, P.; Soto, D.; Bruhn, A.; Alegria, L.; Jarufe, N.; Luengo, C.; Kattan, E.; Regueria, T.; Meissner, A.; Menchaca, R. Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit. Care 2015, 19, 88. [Google Scholar] [CrossRef]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, A.W. 10-Year Follow-up of intensive Glucose Control in Type 2 Diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef]
- Nathan, D.M. Some answers, more controversy, from UKPDS. Commentary. Lancet 1998, 352, 832–833. [Google Scholar] [CrossRef]
- Ewart, R.M. The UKPDS: What was the question? Lancet 1999, 353, 1882. [Google Scholar] [CrossRef]
- Tomkin, G.H.; Hadden, D.R.; Weaver, J.A.; Montgomery, D.A.D. Vitamin-B12 Status of Patients on long-term Metformin Therapy. BMJ 1971, 2, 685–687. [Google Scholar] [CrossRef]
- Jager, J.; Kooy, A.; Lehret, P.H.; Wulfele, M.G.; Kolk, J.; Bets, D.; Verbung, J.; Donker, A.J.M.; Stehouver, C.D.A. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomized placebo-controlled trial. BMJ 2010, 340, c2181. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, C.W.; Fang, S.; Lee, H.S.; Park, J.S. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine 2019, 98, e17918. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, L.; Dennis, J.M.; Coleman, R.I.; Sattar, N.; Hattersley, A.T.; Holman, R.R.; Pearson, E.R. Risk of anemia with metformin Use in Type 2 diabetes: A Mastermind Study. Diabetes Care 2020, 43, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.C.; Kancherla, V.; Khakharia, A.; Allen, L.L.; Phillips, L.S.; Rhee, M.K.; Wilson, P.W.F.; Vaughan, C.P. Long-term metformin treatment and risk of peripheral neuropathy in older Veterans. Diabetes Res. Clin. Pract. 2020, 170, 108486. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.H.; Fadl, N.N.; Kotob, S.E. Impact of long-term Metformin therapy on hepcidin and Iron status in type II Diabetic Patients. Int. J. Pharm. Clin. Res. 2015, 7, 185–193. [Google Scholar]
- Hermann, L.S.; Schersten, B.; Bitzen, P.-O.; Kjellström, T.; Lindgärde, F.; Melander, A. Therapeutic Comparison of Metformin and Sulfonylurea, Alone and in Various Combinations. A double-blind controlled study. Diabetes Care 1994, 17, 1100–1109. [Google Scholar] [CrossRef]
- Dandona, P.; Fonseca, V.; Mier, A.; Beckett, A. Diarrhea and Metformin in Diabetic Clinic. Diabetes Care 1983, 6, 472–474. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Group Study (UKPDS). VIII. Study Design, Prog RRress and Performance. Diabetologia 1991, 34, 877–890. [Google Scholar]
- Turner, R.C.; Cull, C.A.; Fright, V.; Holman, R.R. Glycemic Control with Diet, Sulphonylurea, Metformin, or Insulin in Patients with Type 2 Diabetes Mellitus. Progressive Requirement of multiple Therapies (UKPDS 49). JAMA 1998, 231, 2005–2012. [Google Scholar]
- Flory, J.H.; Mushlin, A.I. Effect of Cost and Formulation in Persistence and Adherence to Initial Metformin in Therapy For Type 2 Diabetes. Diabetes Care 2020, 43, e62–e67. [Google Scholar] [CrossRef]
- Piragine, E.; Petri, D.; Martelli, A.; Calderone, V.; Lucentoforte, E. Adherence to Oral Antidiabetic Drugs in Patients with Type 2 Diabetes: Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1981. [Google Scholar] [CrossRef]
- Mammutovic, A.; Lekic, L.; Zamovic, I.; Mamovic, N.; Kikanovic, A.; Pavlovic, A. Investigations Affecting Adherence to Metformin Therapy In Type 2 Diabetes. Medis. Med. Sci. Res. 2024, 3, 43–51. [Google Scholar]
- Greenes, R.A. A Brief History of Clinical Decision Support. Technical, Social, Cultural, Economic, and Governmental Perspectives. Clin. Decis. Support 2014, 2, 49–109. [Google Scholar] [CrossRef]
- Wang, S.; Hoyte, C. Review of biguanide (Metformin) Toxicity. J. Intensive Care Med. 2018, 34, 863–876. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Klarie, E.; Walsh, M.C.; Nyachoti, C.M. Postprandial portal glucose and lactate fluxes, insulin production, and portal vein-drained viscera oxygen consumption in growing pigs fed a high-fiber diet supplemented with a multi-enzyme cocktail. Anim. Sci. 2016, 94, 3760–3770. [Google Scholar] [CrossRef] [PubMed]
- Dietze, O.; Wicklmayr, M.; Hepp, K.D.; Bogener, W.; Mehnert, H.; Czempiel, H.; Henftling, H.G. On Gluconeogenesis of Human Liver. Accelerated Hepatic Glucose Formation Induced by Increased Precursor Supply. Diabetologia 1976, 12, 555–561. [Google Scholar] [CrossRef]
- Davis, M.A.; Williams, P.E.; Cherrington, A.D. Effect of a mixed meal on hepatic lactate and gluconeogenic precursor metabolism in dogs. Am. J. Physiol. 1984, 247 Pt 1, E362–E369. [Google Scholar] [CrossRef]
- Green, J.M.; Hornsby, J.H.; Pritchett, R.C.; Pritchett, K. Lactate Treshold Comparison in Anaerobic vs Aerobic Athletes and Untrained Partecipants. Int. J. Exerc. Sci. 2014, 7, 329–358. [Google Scholar] [CrossRef]
- Chang, T.; Ravi, N.; Plegue, M.A.; Sonneville, K.R.; Davis, M.M. Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009–2012. Ann. Fam. Med. 2016, 14, 320–324. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynod-Simon, A.; Sobotka, L.; Vanasselt, D.; et al. ESPEN Practical Guidelines Clinical Nutrition And Hydration In Griatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef]
- Doar, J.W.; Cramp, D.G.; Maw, D.S.; Seed, M.; Wynn, V. Blood Pyruvate and Lactate Levels During Oral and Intravenous Glucose Tolerance Tests in Diabetes Mellitus. Clin. Sci. 1970, 39, 253–269. [Google Scholar] [CrossRef]
- Badescu, S.V.; Tataru, C.; Kobilinsea, L.; Georgescu, E.L.; Zahiv, D.M.; Zagrean, L. The association between Diabetes mellitus and Depression. J. Med. Life 2016, 9, 120–125. [Google Scholar]
- Wei, L.; Ji, L.; Miao, Y.; Han, X.; Li, Y.; Wang, Z.; Fu, J.; Guo, L.; Su, Y.; Zhang, Y. Constipation in DM are associated with both poor glycemic control and Diabetic Complications: Current Status and Future Directions. Biomed. Pharmacother. 2023, 165, 115202. [Google Scholar] [CrossRef] [PubMed]
- Haines, S.T. Treating Constipation in the Patient With Diabetes. Diabetes Educ. 1995, 21, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Darienski, R.; Mihaylova, V.; Handjieva-Darienska, T. The link between Obesity and the skin. Front. Nutr. 2022, 9, 855573. [Google Scholar] [CrossRef] [PubMed]
- Svensson, R.; Hahn, R.G.; Zdolsek, J.H.; Bahlmann, H. Plasma volume expansion reveals hidden metabolic acidosis in patients with diabetic ketoacidosis. Intensive Care Mediicne Exp. 2022, 10, 36. [Google Scholar] [CrossRef]
- Délia, J.A.; Segal, A.R.; Pharm, D.; Weinrauch, L.A. Metformin-SGL2, Dehydrationn, and Acidosis Potential. J. Am. Geriatr. Soc. 2017, 65, e101–e102. [Google Scholar] [CrossRef]
- Dobrica, E.C.; Gaman, M.A.; Cozma, M.A.; Bratu, O.G.; Stoian, A.P.; Diaconu, C.C. Polypharmacy in Type 2 Diabetes Mellitus: Insights from an Internal Medicine Department. Medicina 2019, 55, 436. [Google Scholar] [CrossRef]
- Ghiraldi, E.M.; Nourian, A.; Chen, M.; Friedlander, J.I. Investigating Fluid Intake in an Underserved Community: What Factors Are Associated ewith Low Urine Volume on 24-Hour Urine Collection? J. Endocrinol. 2021, 35, 17231728. [Google Scholar] [CrossRef]
- Andraska, E.A.; Tran, L.A.; Haga, L.M.; Mark, A.K.; Madigan, M.C.; Makaroun, M.S.; Eslami, M.H.; Chaer, R.A. Contemporary management of acute and chronic mesenteric ischemia:10-year experience from a multihospital healthcare system. J. Vasc. Surg. 2022, 75, 1624–1635. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Hastings, C.; Johnson, K.; Slaven, E. Metformin-Associated Lactic Acidosis Presenting like Acute Mesenteric Ischemia. J. Emerg. Med. 2019, 57, 720–722. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.S.; Bronander, K.A. Metformin-associated lactic acidosis Masquerading as Ischemic Bowel. Am. J. Med. 2012, 125, e9. [Google Scholar] [CrossRef] [PubMed]
- Canfora, A.; Ferronetti, A.; Marte, G.; Di Maio, V.; Mauriello, C.; Maida, P.; Bottino, V.; Aprea, G.; Amato, B. Predictive Factors of Intestinal necrosis in acute mesenteric Ischemia. Open. Med. 2019, 14, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Ramadori, G. Albumin Infusion and Critically Ill COVID-19 Patients: Hemodilution and Anticoagulation. Int. J. Mol. Med. 2021, 22, 7126. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Anday, M.M.; Fernandez-Fernandez, C.; MoorignaRamadori-Bayad, D.; Castro-Quintela, E.; Dominguez-Montero, A. Sodium Bicarbonate Therapy in Patients with Metabolic Acidosis. Sci. World J. 2014, 21, 627673. [Google Scholar] [CrossRef]
- Sulkin, T.V.; Bosman, D.; Krentz, A.J. Contraindications to Metformin Therapy in Patients with NIDDM. Diabetes Care 1997, 20, 925–928. [Google Scholar] [CrossRef]
Inclusion Criteria | ||
---|---|---|
UKPDS 1996 * | De Fronzo et al. (1995) [121] | |
N | 342 | 352 |
Age (mean years) | 53 | 53 |
BMI | 27–31 | 29 |
Fasting | ||
Hyperglycemia: | ||
HbA1c | 7 | 8 |
Fasting lactate | 1.41-/1.46 (p = 0.08) | |
(<1.30 mmol/L) | 1.47/1.54 | |
Max doses | ||
(mg/day) | 2.550 | 2.550 |
Duration | 15 y | 29 weeks |
Exclusion Criteria * | ||
UKPDS | De Fronzo et al. [121] | |
- Symptomatic diabetes (e.g., polyuria, | - Symptomatic hyperglycemia (e.g., polyuria, | |
dehydration, and ketonuria) | dehydration, and ketonuria) | |
- History of myocardial infarction, angina, | - Symptomatic cardiovascular disease | |
or sign of heart failure | - Concurrent medical illness | |
- More than one major vascular episode | - Three or more alcoholic drinks (>3 oz/day) | |
- Serum creatinine higher than 1.98 mg/mL | - Use of chlortalidone or thiazide allowed | |
- Malignant hypertension and severe retinopathy | ||
- Smoking not mentioned | - Smoking allowed | |
- Severe concurrent illness | - No comorbidities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadori, G.P. Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients. Livers 2025, 5, 35. https://doi.org/10.3390/livers5030035
Ramadori GP. Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients. Livers. 2025; 5(3):35. https://doi.org/10.3390/livers5030035
Chicago/Turabian StyleRamadori, Giuliano Pasquale. 2025. "Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients" Livers 5, no. 3: 35. https://doi.org/10.3390/livers5030035
APA StyleRamadori, G. P. (2025). Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients. Livers, 5(3), 35. https://doi.org/10.3390/livers5030035