Study on Measurement Methods for Moisture Content Inside Wood
Abstract
1. Introduction
2. Measuring Methods for the Moisture Content Inside Wood
3. Testing Method
3.1. Specimens and Measurement Method
3.2. Environment of the Testing Space
4. Measurement Results of the T&H Sensors
4.1. Change in the Local Temperature and Humidity
4.2. Changes of Ml
5. Comparison of Ml and Mod
5.1. Moisture Absorption and Desorption Environment (Environments 1 and 2)
5.2. Dry and Wet Repetitive Environments (Environment 3, 4)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015, Distr.: General 29 January 2016. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/10.pdf (accessed on 17 July 2025).
- Ministry of Agriculture, Forestry and Fisheries. Act on the Promotion of Wood in Buildings to Contribute to the Realization of a Decarbonized Society; Act No. 36 of 2010; Ministry of Agriculture, Forestry and Fisheries: Phnom Penh, Cambodia, 2010. [Google Scholar]
- Tornari, V.; Basset, T.; Andrianakis, M.; Kosma, K. Impact of Relative Humidity on Wood Sample: A Climate Chamber Experimental Simulation Monitored by Digital Holographic Speckle Pattern Interferometry. J. Imaging 2019, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Dubois, F.; Husson, J.M.; Sauvat, N.; Manfoumbi, N. Modeling of the Viscoelastic Mechano-Sorptive Behavior in Wood. Mech. Time-Depend. Mater. 2012, 16, 439–460. [Google Scholar] [CrossRef]
- Hanhijärvi, A. Advances in the Knowledge of the Influence of Moisture Changes on the Long-Term Mechanical Performance of Timber Structures. Mater. Struct. 2000, 33, 43–49. [Google Scholar] [CrossRef]
- Wang, J.Y.; Stirling, R.; Morris, P.I.; Taylor, A.; Lloyd, J.; Kirker, G.; Lebow, S.; Mankowski, M.; Barnes, H.M.; Morrell, J.J. Durability of Mass Timber Structures: A Review of the Biological Risks. Wood Fiber Sci. 2018, 50, 110–127. [Google Scholar] [CrossRef]
- Glišović, I. Structural Failures in Timber Structures: Analysis of Typical Failure Modes and Their Possible Causes. In Proceedings of the Saves Građevinskih Inženjera Srbije Association of Civil Engineers of Serbia Condition Assessment, Maintenance, and Rehabilitation of Civil Engineering Facilities, Vrnjačka Banja, Serbia, 19–21 June 2024. [Google Scholar]
- Brischke, C.; Rapp, O. Influence of Wood Moisture Content and Wood Temperature on Fungal Decay in Field Observations in Different Micro-Climates. Wood Sci. Technol. 2008, 42, 663–677. [Google Scholar] [CrossRef]
- Brischke, C.; Meyer, L.; Bornemann, T. The Potential of Moisture Content Measurements for Testing the Durability of Timber Products. Wood Sci. Technol. 2013, 47, 869–886. [Google Scholar] [CrossRef]
- Holzbau Deutschland-Institut. Feuchtemanagement Witterungsschutz in der Bauphase; Holzbau Deutschland Institut e.V.: Berlin, Germany, 2024. [Google Scholar]
- Grönquist, N.; Flexeder, B.; Franke, B.; Franke, S. Monitoring of Wood Moisture Content in Timber Structures by Electrical Resistance and the Sorption Methods: Current Challenges. In Sustainability and Durability of Taller Timber Buildings: A State-of-the-Art Report, COST Action CA20139 Holistic Design of Taller Timber Buildings (HELEN); Open Research Europe: Brussels, Belgium, 2022. [Google Scholar]
- Kordziel, S.; Glass, S.V.; Boardman, C.R.; Munson, R.A.; Zelinka, S.L.; Pei, S.; Tabares-Velasco, P.C. Hygrothermal Characterization and Modeling of Cross-Laminated Timber in the Building Envelope. Build. Environ. 2020, 177, 106866. [Google Scholar] [CrossRef]
- Kurozuka, H.; Mori, T.; Kitamori, A. Relationships between Inside Moisture Content and Dimension of CLT under Drying and Wetting Cycles. Archit. Inst. Jpn. Annu. Conf. Abstr. 2019, 42, 187–190. [Google Scholar]
- Franke, B.; Franke, S.; Schiere, M.; Müller, A. Quality Assurance of Timber Structures by New Monitoring Methods for the Moisture Content of Wood. In Proceedings of the World Conference on Timber Engineering 2023, Oslo, Norway, 19–22 June 2023; pp. 1081–1087. [Google Scholar]
- Melin, C.; Gebäck, T.; Heintz, A.; Bjurman, J. Monitoring Dynamic Moisture Gradients in Wood Using Inserted Relative Humidity and Temperature Sensors. e-Preserv. Sci. 2016, 13, 7–14. [Google Scholar]
- Tanaka, T.; Avramidis, S.; Shida, S. Evaluation of Moisture Content Distribution in Wood by Soft X-Ray Imaging. J. Wood Sci. 2009, 55, 69–73. [Google Scholar] [CrossRef]
- Tanaka, T.; Kawai, Y. A New Method for Nondestructive Evaluation of Solid Wood Moisture Content Based on Dual-Energy X-Ray Absorptiometry. Wood Sci. Technol. 2013, 47, 1213–1229. [Google Scholar] [CrossRef]
- Běťák, A.; Zach, J.; Misák, P.; Vaněrek, J. Comparison of Wood Moisture Meters Operating on Different Principles of Measurement. Buildings 2023, 13, 531. [Google Scholar] [CrossRef]
- Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. Methods to Determine Wood Moisture Content and Their Applicability in Monitoring Concepts. J. Civ. Struct. Health Monit. 2015, 5, 115–127. [Google Scholar] [CrossRef]
- Ariki, A.; Tanaka, K.; Mori, T. Study on Measurement Method of Internal Moisture Content Using CLT. Archit. Inst. Jpn. Annu. Conf. Abstr. 2021, 45, 275–278. (In Japanese) [Google Scholar]
- Kollmann, F.F.P.; Cote, W.A., Jr. Principles of Wood Science and Technology I: Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968; pp. 190–191. [Google Scholar]
- Saito, S.; Shida, S. Equilibrium Moisture Content of Wood Estimated Using the Climate Data of Japan. Mokuzai Gakkaishi 2016, 62, 182–189. (In Japanese) [Google Scholar] [CrossRef]
Specimens | 50 mm Cube | 75 mm Cube | 100 mm Cube |
---|---|---|---|
Japanese cypress | 3 | 3 | 2 |
Douglas fir | 3 | 0 | 0 |
Dimensions/weight | Diameter: 17 mm×Thickness: 6 mm/about 3.3 g |
Cover dimensions | Diameter: 19 mm × Height: 13 mm |
Measurement range | Temperature: −20 °C to +80 °C Relative humidity: 0% to 95%RH |
Measurement accuracy | Temperature: ±0.8 °C Relative humidity: ±5%RH |
Measurement resolution | Temperature: 0.5 °C Relative humidity: 0.6%RH |
Measurement interval | 1 s to 3 h |
Lifespan of battery | About 2 years (When measured every 10 min in an environment of −20 °C to +25 °C) |
Day 1 | Day 2 | Day 3 | Day 4 | |
---|---|---|---|---|
Environment 1 | 20 °C/95% | ⇒ | ⇒ | 20 °C/65% |
Environment 2 | 20 °C/40% | ⇒ | ⇒ | 20 °C/65% |
Environment 3 | 20 °C/90% | 20 °C/65% | 20 °C/40% | 20 °C/65% |
Environment 4 | 40 °C/90% | 20 °C/65% | 0 °C | 20 °C/65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, T.; Ariki, A.; Enatsu, Y.; Sadakane, Y.; Tanaka, K. Study on Measurement Methods for Moisture Content Inside Wood. Buildings 2025, 15, 2719. https://doi.org/10.3390/buildings15152719
Mori T, Ariki A, Enatsu Y, Sadakane Y, Tanaka K. Study on Measurement Methods for Moisture Content Inside Wood. Buildings. 2025; 15(15):2719. https://doi.org/10.3390/buildings15152719
Chicago/Turabian StyleMori, Takuro, Ayano Ariki, Yutaro Enatsu, Yuri Sadakane, and Kei Tanaka. 2025. "Study on Measurement Methods for Moisture Content Inside Wood" Buildings 15, no. 15: 2719. https://doi.org/10.3390/buildings15152719
APA StyleMori, T., Ariki, A., Enatsu, Y., Sadakane, Y., & Tanaka, K. (2025). Study on Measurement Methods for Moisture Content Inside Wood. Buildings, 15(15), 2719. https://doi.org/10.3390/buildings15152719