Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Preparation and Analytical Instruments
2.2. NLO Measurement
3. Results and Discussion
3.1. Optical Property Characterization of Phthalocyanine-like Squaraine Dyes
3.2. Nonlinear Optical Properties of Phthalocyanine-like Squaraine Dyes
3.2.1. Analysis of Z-Scan Results of Phthalocyanine-like Squaraine Dyes
3.2.2. Analysis of I-Scan Results of Phthalocyanine-like Squaraine Dyes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Husain, A.; Ganesan, A.; Sebastian, M.; Makhseed, S. Large ultrafast nonlinear optical response and excellent optical limiting behaviour in pyrene-conjugated zinc(II) phthalocyanines at a near-infrared wavelength. Dye. Pigment. 2021, 184, 108787. [Google Scholar] [CrossRef]
- Samad, F.A.; Mahmoud, A.; El-Khouly, M.E.; Apsari, R.; Mohamed, T. Nonlinear optical studies of perylenediimide nanowires using femtosecond laser pulses for optical limiter application. J. Mol. Liq. 2025, 418, 126679. [Google Scholar] [CrossRef]
- Zidan, M.D.; EL-Daher, M.S.; Al-Ktaifani, M.M.; Allahham, A.; Ghanem, A. Spatial phase modulation and all-optical switching of tris(2′,2-bipyridyl)iron(II) tetrafluoroborate. Optik 2020, 219, 165275. [Google Scholar] [CrossRef]
- Verrone, R.N.; Moisset, C.; Lemarchand, F.; Campos, A.; Cabié, M.; Perrin-Pellegrino, C.; Lumeau, J.; Natoli, J.Y.; Iliopoulos, K. Thickness-dependent optical nonlinearities of nanometer-thick Sb2Te3 thin films: Implications for mode-locking and super-resolved direct laser writing. ACS Appl. Nano Mater. 2020, 3, 7963–7972. [Google Scholar] [CrossRef]
- Khazaeinezhad, R.; Hosseinzadeh Kassani, S.; Paulson, B.; Jeong, H.; Gwak, J.; Rotermund, F.; Yeom, D.I.; Oh, K. Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser. Sci. Rep. 2017, 7, 41480. [Google Scholar] [CrossRef]
- Huang, B.; Yi, J.; Jiang, G.; Miao, L.; Hu, W.; Zhao, C.; Wen, S. Passively Q-switched vectorial fiber laser modulated by hybrid organic-inorganic perovskites. Opt. Mater. Express 2017, 7, 1220. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Maji, T.K.; Aswin, J.R.; Mukherjee, S.; Alexander, R.; Mondal, A.; Das, S.; Sharma, R.K.; Chakraborty, N.K.; Dasgupta, K.; Sharma, A.M.R.; et al. Combinatorial large-area MoS2/Anatas–TiO2 interface: A pathway to emergent optical and optoelectronic functionalities. ACS Appl. Mater. Interfaces 2020, 12, 44345–44359. [Google Scholar] [CrossRef]
- Qiao, J.; Chuang, M.Y.; Lan, J.C.; Lin, Y.Y.; Sung, W.H.; Fan, R.; Wu, M.Y.; Lee, C.Y.; Chen, C.H.; Liu, H.; et al. Two-photon absorption within layered Bi2Te3 topological insulators and the role of nonlinear transmittance therein. J. Mater. Chem. C 2019, 7, 7027–7034. [Google Scholar] [CrossRef]
- John, J.S.; Arumanayagam, T.; Murugakoothan, P.; Sajan, D.; Joy, N.; Philip, R. Synthesis, growth and characterization of guanidinium hippurate monohydrate single crystals: A new third order nonlinear optical material. Opt. Mater. 2020, 110, 110493. [Google Scholar] [CrossRef]
- Shanu, M.; Acharyya, J.N.; Kuriakose, A.; Banerjee, D.; Soma, V.R.; Vijaya Prakash, G. Ultrafast dynamics, optical nonlinearities, and chemical sensing application of free-standing porous silicon-based optical microcavities. ACS Appl. Mater. Interfaces 2024, 16, 16996–17006. [Google Scholar] [CrossRef]
- Yahya, M.; Nural, Y.; Seferoğlu, Z. Recent advances in the nonlinear optical (NLO) properties of phthalocyanines: A review. Dye. Pigment. 2022, 198, 109960. [Google Scholar] [CrossRef]
- Jia, L.; Cui, D.; Wu, J.; Feng, H.; Yang, Y.; Yang, T.; Qu, Y.; Du, Y.; Hao, W.; Jia, B.; et al. High third-order Kerr optical nonlinearity in BiOBr 2D films measured by the Z-scan method. APL Photonics 2019, 4, 092101. [Google Scholar]
- Zhou, Y.; Huang, Y.; Xu, X.; Fan, Z.; Khurgin, J.B.; Xiong, Q. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev. 2020, 7, 041313. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, X.; Hu, W.; Jiang, Y.; Chen, C.; Dong, N.; Wang, J.; Liang, Y.; Zhu, B.; Zhang, H.; et al. Ultra-high nonlinear saturable absorption responses and ultra-fast carrier dynamics of organic DAST. Adv. Opt. Mater. 2023, 11, 2202241. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Q.; Qiu, J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886. [Google Scholar] [CrossRef]
- Tian, T.; Fang, Y.; Wang, W.; Yang, M.; Tan, Y.; Xu, C.; Zhang, S.; Chen, Y.; Xu, M.; Cai, B.; et al. Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging. Nat. Commun. 2023, 14, 4429. [Google Scholar] [CrossRef]
- Hutchings, M.G.; Ferguson, I.; Allen, S.; Zyss, J.; Ledoux, I. Non-linear optical properties of squarate esters and amides. J. Chem. Res. 1998, 5, 244–245. [Google Scholar] [CrossRef]
- Ilina, K.; MacCuaig, W.M.; Laramie, M.; Jeouty, J.N.; McNally, L.R.; Henary, M. Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges. Bioconjug. Chem. 2020, 31, 194–213. [Google Scholar] [CrossRef]
- Inoue, T.; Pandey, S.S.; Fujikawa, N.; Yamaguchi, Y.; Hayase, S. Synthesis and characterization of squaric acid based NIR dyes for their application towards dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 2010, 213, 23–29. [Google Scholar] [CrossRef]
- Yao, Y.; Lin, H.; Cai, S.; Yang, X.; Gao, X. Single-bond-linked and vinylene-bridged azulenyl bis(squaraine) dyes: Design, synthesis and molecular self-assembly behaviors. Org. Chem. Front. 2024, 11, 7059–7068. [Google Scholar] [CrossRef]
- Krishna, M.B.M.; Rao, D.N. Influence of solvent contribution on nonlinearities of near infra-red absorbing croconate and squaraine dyes with ultrafast laser excitation. J. Appl. Phys. 2013, 114, 133103. [Google Scholar] [CrossRef]
- Sarasiya, S.; Sarasiya, S.; Henary, M. Exploration of NIR squaraine contrast agents containing various heterocycles: Synthesis, optical properties and applications. Pharmaceuticals 2023, 16, 1299. [Google Scholar] [CrossRef]
- MacCuaig, W.M.; Wickizer, C.; Van, R.S.; Buabeng, E.R.; Lerner, M.R.; Grizzle, W.E.; Shao, Y.; Henary, M.; McNally, L.R. Influence of structural moieties in squaraine dyes on optoacoustic signal shape and intensity. Chemistry 2024, 10, 713–729. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, X.; Xu, J.; Li, J.; Yang, J.; Wang, Y.; Zhang, X.; Xiao, J.; Song, Y. Modulation of the nonlinear optical response in squaraine derivatives via alkyl cyclization: Near-infrared ultrafast nonlinear refraction and absorption. Dye. Pigment. 2024, 225, 112058. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Y.; Chen, Z.; Li, H.; Hu, R.; Qu, J.; Lu, Y.; Liu, L. NIR-II light-activated two-photon squaric acid dye with type I photodynamics for antitumor therapy. Nanophotonics 2022, 11, 5089–5100. [Google Scholar] [CrossRef]
- Ballestas-Barrientos, A.R.; Woodward, A.W.; Moreshead, W.V.; Bondar, M.V.; Belfield, K.D. Synthesis and linear and nonlinear photophysical characterization of two symmetrical pyrene-terminated squaraine derivatives. J Phys. Chem. C 2016, 120, 7829–7838. [Google Scholar] [CrossRef]
- Bondar, M.V.; Faryadras, S.; Munera, N.; Chang, H.J.; Uddin, M.; Belfield, K.D.; Kachkovsky, O.D.; Van Stryland, E.W.; Hagan, D.J. New two-photon absorbing squaraine derivative with efficient near-infrared fluorescence, superluminescence, and high photostability. J. Phys. Chem. B 2022, 126, 3897–3907. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, X.; Ma, P.; Zhou, F.; Li, Z.; Niu, R.; Yang, J.; Wang, Y.; Zhang, X.; Song, Y.; et al. Enhanced ultrafast nonlinear absorption and optical limiting of indolium squaraine for laser protection. Opt. Mater. 2022, 126, 112178. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, G.; Wang, J.; Wang, M.; Guo, W.; Tan, M.; Si, L.; Yang, Y.; Wang, H.; Wang, H. A synergetic strategy of NIR-II squaraine dyes with ultrahigh photothermal conversion efficiency for photothermal therapy. Sci. China Chem. 2024, 67, 612–621. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.; Li, S.; Zhang, F.; Li, Z.; Li, Z.; Jin, B. Solvent effects and self-assembled aggregation modulate nonlinear optical effects in indocyanine green-like dyes. Opt. Mater. 2024, 150, 115132. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef]
Wavelength (nm) | Sample | α0 (cm−1) | I0 (GW cm−2) | β (cm GW−1) |
---|---|---|---|---|
3.39 | −3.71 | |||
4.24 | −4.64 | |||
SNF | 52 | 6.36 | −4.08 | |
12.72 | −3.79 | |||
800 | 8.48 | −1.36 | ||
12.70 | −1.11 | |||
LNF | 20 | 21.20 | −0.70 | |
29.68 | −0.47 | |||
11.01 | −0.99 | |||
16.52 | −1.49 | |||
SNF | 30 | 27.53 | −3.13 | |
900 | 38.54 | −2.62 | ||
55.05 | −2.91 | |||
10.46 | −2.26 | |||
13.94 | −1.82 | |||
LNF | 41 | 20.91 | −1.47 | |
34.85 | −1.05 |
Wavelength (nm) | Sample | α0 (cm−1) | Leff (mm−1) | Modulation Depth (%) | Nonsaturation Loss (%) | Saturation Intensity (GW·cm−2) |
---|---|---|---|---|---|---|
800 nm | SNF (0.05 g/L) | 52 | 0.191 | 42.5 | 27.8 | 32.01 |
LNF (0.05 g/L) | 20 | 0.432 | 28.1 | 14.5 | 12.48 | |
900 nm | SNF (0.005 g/L) | 3 | 0.864 | 37.3 | 12.8 | 27.96 |
LNF (0.05 g/L) | 41 | 0.24 | 43 | 16.1 | 27.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Shi, W.; Li, X.; Wang, Y.; Si, L.; Gao, W.; Qi, M.; Zhou, M.; Ma, J.; Li, A.; et al. Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes. Photonics 2025, 12, 779. https://doi.org/10.3390/photonics12080779
Zhang F, Shi W, Li X, Wang Y, Si L, Gao W, Qi M, Zhou M, Ma J, Li A, et al. Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes. Photonics. 2025; 12(8):779. https://doi.org/10.3390/photonics12080779
Chicago/Turabian StyleZhang, Fan, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, and et al. 2025. "Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes" Photonics 12, no. 8: 779. https://doi.org/10.3390/photonics12080779
APA StyleZhang, F., Shi, W., Li, X., Wang, Y., Si, L., Gao, W., Qi, M., Zhou, M., Ma, J., Li, A., Li, Z., Wang, H., & Jin, B. (2025). Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes. Photonics, 12(8), 779. https://doi.org/10.3390/photonics12080779