Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = Volcanic rock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3618 KiB  
Article
Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador
by Marlon Ponce-Zambrano, Julio Garzón-Roca, Francisco J. Torrijo and Olegario Alonso-Pandavenes
Sustainability 2025, 17(15), 7080; https://doi.org/10.3390/su17157080 - 5 Aug 2025
Viewed by 64
Abstract
This paper presents a geomechanical characterization for unwelded volcanic bimrock materials. Bimrocks are geological materials consisting of blocks of rock of different sizes embedded in a finer matrix. Many volcanic deposits and outcrops can be classified as bimrocks, and some of them correspond [...] Read more.
This paper presents a geomechanical characterization for unwelded volcanic bimrock materials. Bimrocks are geological materials consisting of blocks of rock of different sizes embedded in a finer matrix. Many volcanic deposits and outcrops can be classified as bimrocks, and some of them correspond to unwelded bimrocks, i.e., with the absence of strong bonds between blocks of rock and matrix. The geomechanical characterization proposed is oriented towards bimrocks slopes, their stability and landslide hazard occurrence. It consists of five steps which includes the material description, the volcanic deposit classification, the definition of block size range, the computation of the volumetric block percentage, the geotechnical characterization of the blocks of rock, and the geological and geotechnical analysis of the matrix that surrounds the blocks. The geomechanical characterization proposed is applied to four slopes at the Western Cordillera of Ecuador, where slopes instabilities are common. Results show that the geomechanical characterization sets a reliable framework for geotechnically describing bimrocks materials, explaining the actual stability state of the slopes. It also enables taking appropriate and optimum decisions in the design and management of volcanic slopes, thus contributing to a sustainable approach of landslide mitigation. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

58 pages, 10593 KiB  
Article
Statistical Physics of Fissure Swarms and Dike Swarms
by Agust Gudmundsson
Geosciences 2025, 15(8), 301; https://doi.org/10.3390/geosciences15080301 - 4 Aug 2025
Viewed by 81
Abstract
Fissure swarms and dike swarms in Iceland constitute the main parts of volcanic systems that are 40–150 km long, 5–20 km wide, extend to depths of 10–20 km, and contain 2 × 1014 outcrop-scale (≥0.1 m) and 1022–23 down to grain-scale [...] Read more.
Fissure swarms and dike swarms in Iceland constitute the main parts of volcanic systems that are 40–150 km long, 5–20 km wide, extend to depths of 10–20 km, and contain 2 × 1014 outcrop-scale (≥0.1 m) and 1022–23 down to grain-scale (≥1 mm) fractures, suggesting that statistical physics is an appropriate method of analysis. Length-size distributions of 565 outcrop-scale Holocene fissures (tension fractures and normal faults) and 1041 Neogene dikes show good to excellent fits with negative power laws and exponential laws. Here, the Helmholtz free energy is used to represent the energy supplied to the swarms and to derive the Gibbs–Shannon entropy formula. The calculated entropies of 12 sets and subsets of fissures and 3 sets and subsets of dikes all show strong positive correlations with sets/subsets length ranges and scaling exponents. Statistical physics considerations suggest that, at a given time, the probability of the overall state of stress in a crustal segment being heterogeneous is much greater than the state of stress being homogeneous and favourable to the propagation of a fissure or a dike. In a heterogeneous stress field, most fissures/dikes become arrested after a short propagation—which is a formal explanation of the observed statistical size-length distributions. As the size of the stress-homogenised rock volume increases larger fissures/dikes can form, increasing the length range of the distribution (and its entropy) which may, potentially, transform from an exponential distribution into a power-law distribution. Full article
Show Figures

Figure 1

19 pages, 5166 KiB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Viewed by 134
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 165
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 146
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

43 pages, 20293 KiB  
Article
Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the West African Craton (Saghro Massif, Anti-Atlas)
by Rachid Oukhro, Nasrrddine Youbi, Boriana Kalderon-Asael, David A. D. Evans, James Pierce, Jörn-Frederik Wotzlaw, Maria Ovtcharova, João Mata, Mohamed Achraf Mediany, Jihane Ounar, Warda El Moume, Ismail Hadimi, Oussama Moutbir, Moulay Ahmed Boumehdi, Abdelmalek Ouadjou and Andrey Bekker
Minerals 2025, 15(8), 776; https://doi.org/10.3390/min15080776 - 24 Jul 2025
Viewed by 617
Abstract
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. [...] Read more.
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. Zircon U-Pb dating and geochemical analyses of the Oued Dar’a Caldera (ODC) volcanic succession in the Saghro Massif reveal two major eruptive cycles corresponding to the lower and upper Ouarzazate Group. The 1st cycle (588–563 Ma) includes pre- and syn-caldera volcanic succession characterized by basaltic andesite to rhyolitic rocks, formed in a volcanic arc setting through lithospheric mantle-derived mafic magmatism and crustal melting. A major caldera-forming eruption occurred approximately 571–562 Ma, with associated rhyolitic dyke swarms indicating a larger caldera extent than previously known. The 2nd cycle (561–543 Ma) features post-caldera bimodal volcanism, with tholeiitic basalts and intraplate felsic magmas, signaling a shift to continental flood basalts and silicic volcanic systems. The entire volcanic activity spans approximately 23–40 million years. This succession is linked to late Ediacaran intracontinental super-eruptions tied to orogenic collapse and continental extension, likely in association with the Central Iapetus Magmatic Province (CIMP), marking a significant transition in the geodynamic evolution of the WAC. Full article
Show Figures

Figure 1

17 pages, 7086 KiB  
Article
Study on Evolution of Stress Field and Fracture Propagation Laws for Re-Fracturing of Volcanic Rock
by Honglei Liu, Jiangling Hong, Wei Shu, Xiaolei Wang, Xinfang Ma, Haoqi Li and Yipeng Wang
Processes 2025, 13(8), 2346; https://doi.org/10.3390/pr13082346 - 23 Jul 2025
Viewed by 317
Abstract
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the [...] Read more.
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the in situ stress field, which complicates the design of re-fracturing parameters. To address this, this study adopts an integrated geology–engineering approach to develop a formation-specific geomechanical model, using rock mechanical test results and well-log inversion to reconstruct the reservoir’s initial stress field. The dynamic stress field simulations and re-fracturing parameter optimization were performed for Block Dixi-14. The results show that stress superposition effects induced by multiple fracturing stages and injection–production cycles have significantly altered the current in situ stress distribution. For Well K6, the optimized re-fracturing parameters comprised a pump rate of 12 m3/min, total fluid volume of 1200 m3, prepad fluid ratio of 50–60%, and proppant volume of 75 m3, and the daily gas production increased by 56% correspondingly, demonstrating the effectiveness of the optimized re-fracturing design. This study not only provides a more realistic simulation framework for fracturing volcanic rock gas reservoirs but also offers a scientific basis for fracture design optimization and enhanced gas recovery. The geology–engineering integrated methodology enables the accurate prediction and assessment of dynamic stress field evolution during fracturing, thereby guiding field operations. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

20 pages, 10834 KiB  
Article
Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean
by Qing Liu, Cui Liu, Jixu Liu, Jinfu Deng and Shipan Tian
Appl. Sci. 2025, 15(15), 8139; https://doi.org/10.3390/app15158139 - 22 Jul 2025
Viewed by 197
Abstract
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow [...] Read more.
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow basalt from Dadingzi Mountain yields a concordant age of 117.5 ± 2.1 Ma (MSWD = 3.6). Integrating previous studies, we identify three distinct basalt phases. The Late Triassic basalt (210 Ma–230 Ma) is characterized as komatites–melilitite, exhibiting features of island arc basalt, as well as some characteristics of E-MORB. It also contains high-magnesium lava, suggesting that it may be a product of a juvenile arc. The Middle Jurassic basalt (around 159 Ma–172 Ma) consists of a combination of basalt and magnesium andesite, displaying features of oceanic island basalt and mid-ocean ridge basalt. Considering the contemporaneous sedimentary rocks as hemipelagic continental slope deposits, it is inferred that these basalts were formed in an arc environment associated with oceanic subduction, likely as a result of subduction of the young oceanic crust. The Early Cretaceous basalt (around 117 Ma) occurs in pillow structures, exhibiting some characteristics of oceanic island basalt but also showing transitional features towards a continental arc. Considering the regional distribution of the rocks, it is inferred that this basalt likely formed in a back-arc basin. Integrating the formation ages, nature, and tectonic attributes of the various structural units within the RSAC, as well as previous research, it is inferred that subduction of the Paleo-Pacific Ocean had already begun during the Late Triassic and continued into the Early Cretaceous without cessation. Full article
Show Figures

Figure 1

16 pages, 11535 KiB  
Article
Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India
by Dhiren Kumar Ruidas, Nicolas E. Beaudoin, Srabani Thakur, Aniruddha Musib and Gourab Dey
Minerals 2025, 15(8), 766; https://doi.org/10.3390/min15080766 - 22 Jul 2025
Viewed by 793
Abstract
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study [...] Read more.
Stylolites, common dissolution surfaces in carbonate rocks, form due to localized stress-induced pressure-solution during burial compaction or tectonic contraction. Their morphology and growth are influenced by dissolution kinetics, rock heterogeneity, clay content, burial depth, stress evolution, diagenesis, and pore fluid availability. This study applies the stylolite roughness inversion technique (SRIT), a proven paleopizometer that quantifies the principal vertical stress (σv = σ1) prevailing in strata in the last moments of bedding-parallel stylolites (BPS) formation, to the Late Cretaceous Bagh Group carbonates in the Narmada Basin, India, to estimate their burial paleo-depth. Using the Fourier Power Spectrum (FPS), we obtained 18 σ1 values from a collection of 30 samples, enabling us to estimate paleo-burial depths for the Bagh Group ranging from 660 to 1320 m. As the Bagh Group burial history is unknown, but as there is no subsequent sedimentary deposition above it, we relate this ca. 1.3 km burial depth to the now eroded thickness of the deposits related to Deccan volcanism at the end of the Cretaceous time, implying a quasi-instantaneous development of the BPS population in the strata. This research highlights the robustness of SRIT for reconstructing burial histories in carbonate sequences and that it can be a reliable way to reconstruct the thickness of eroded deposits in well-constrained geological history. Full article
Show Figures

Figure 1

22 pages, 6083 KiB  
Article
Geochemical Characteristics and Thermal Evolution History of Jurassic Tamulangou Formation Source Rocks in the Hongqi Depression, Hailar Basin
by Junping Cui, Wei Jin, Zhanli Ren, Hua Tao, Haoyu Song and Wei Guo
Appl. Sci. 2025, 15(14), 8052; https://doi.org/10.3390/app15148052 - 19 Jul 2025
Viewed by 237
Abstract
The Jurassic Tamulangou Formation in the Hongqi Depression has favorable hydrocarbon generation conditions and great resource potential. This study systematically analyzes the geochemical characteristics and thermal evolution history of the source rocks using data from multiple key wells. The dark mudstone of the [...] Read more.
The Jurassic Tamulangou Formation in the Hongqi Depression has favorable hydrocarbon generation conditions and great resource potential. This study systematically analyzes the geochemical characteristics and thermal evolution history of the source rocks using data from multiple key wells. The dark mudstone of the Tamulangou Formation has a thickness ranging from 50 to 200 m, with an average total organic carbon (TOC) content of 0.14–2.91%, an average chloroform bitumen “A” content of 0.168%, and an average hydrocarbon generation potential of 0.13–3.71 mg/g. The organic matter is primarily Type II and Type III kerogen, with an average vitrinite reflectance of 0.71–1.36%, indicating that the source rocks have generally reached the mature hydrocarbon generation stage and are classified as medium-quality source rocks. Thermal history simulation results show that the source rocks have undergone two major thermal evolution stages: a rapid heating phase from the Late Jurassic to Early Cretaceous and a slow cooling phase from the Late Cretaceous to the present. There are differences in the thermal evolution history of different parts of the Hongqi Depression. In the southern part, the Tamulangou Formation entered the hydrocarbon generation threshold at 138 Ma, reached the hydrocarbon generation peak at approximately 119 Ma, and is currently in a highly mature hydrocarbon generation stage. In contrast, the central part entered the hydrocarbon generation threshold at 128 Ma, reached a moderately mature stage around 74 Ma, and has remained at this stage to the present. Thermal history simulations indicate that the Hongqi Depression reached its maximum paleotemperature at 100 Ma in the Late Early Cretaceous. The temperature evolution pattern is characterized by an initial increase followed by a gradual decrease. During the Late Jurassic to Early Cretaceous, the Hongqi Depression experienced significant fault-controlled subsidence and sedimentation, with a maximum sedimentation rate of 340 m/Ma, accompanied by intense volcanic activity that created a high-temperature geothermal gradient of 40–65 °C/km, with paleotemperatures exceeding 140 °C and a heating rate of 1.38–2.02 °C/Ma. This thermal background is consistent with the relatively high thermal regime observed in northern Chinese basins during the Late Early Cretaceous. Subsequently, the basin underwent uplift and cooling, reducing subsidence and gradually lowering formation temperatures. Full article
Show Figures

Figure 1

21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 314
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

29 pages, 14630 KiB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 279
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 4663 KiB  
Article
Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite
by Shilei Liu, Yiduo Li, Han Liu, Peng Wang, Shizhen Zhang and Fenglin Chen
Minerals 2025, 15(7), 730; https://doi.org/10.3390/min15070730 - 12 Jul 2025
Viewed by 199
Abstract
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the [...] Read more.
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the northern Yangtze Block, by conducting systematic chronology, mineralogy, and geochemistry analyses to investigate their source, petrogenesis, and tectonic setting. LA-ICP-MS U–Pb geochronology reveals that the medium- to coarse-grained and medium- to fine-grained syenogranites have crystallization ages of 878 ± 4.2 Ma and 880 ± 6.5 Ma, respectively. These syenogranites have aluminum saturation index (A/CNK) values ranging from 0.79 to 1.06, indicating quasi-aluminous to weakly peraluminous compositions, and are classified as calc-alkaline I-type granites. The geochemical indicators of these rocks, including Mg# (44–48, mean 46), Zr/Hf (40.07), Nb/La (0.4), and zircon εHf(t) values (+9.2 to +10.9), collectively indicate a depleted lithospheric mantle source. The mantle source was metasomatized by subduction-derived fluids and sediment melts prior to partial melting as evidenced by their higher Mg#, elevated Ba content, and distinctive ratios (Rb/Y, Nb/Y, Th/Yb, Th/Sm, Th/Ce, and Ba/La). Integrating regional data, this study confirms crust–mantle interaction along the northern Yangtze during the early Neoproterozoic, supporting a sustained subduction-related tectonic setting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

13 pages, 6501 KiB  
Article
Pyrite-Hosted Inclusions in the Southern Ore Belt of the Bainaimiao Porphyry Cu Deposit: Composition and δ34S Characteristics
by Liwen Wu, Yushan Zuo, Yongwang Zhang, Jianjun Yang, Yimin Liu, Guobin Zhang, Hong Zhang, Peng Zhang and Rui Liu
Minerals 2025, 15(7), 729; https://doi.org/10.3390/min15070729 - 12 Jul 2025
Viewed by 259
Abstract
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the [...] Read more.
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the deposit’s southern ore belt were analyzed across distinct mineralization stages. Using Electron Probe Micro-Analysis (EPMA) and in situ sulfur isotope analysis (MC-ICP-MS), inclusion assemblages in pyrite were identified, including pyrrhotite-chalcopyrite solid solutions, biotite, and dolomite. The results demonstrate that these inclusions primarily formed through coprecipitation with pyrite during crystal growth. Early-stage mineralizing fluids exhibited extreme temperatures exceeding 700 °C, coupled with low oxygen fugacity (fO2) and low sulfur fugacity (fS2). Sulfur isotope compositions (δ34S: −5.85 to −4.97‰) indicate a dominant mantle-derived magmatic sulfur source, with contributions from reduced sulfur in sedimentary rocks. Combined with regional geological evolution, the Bainaimiao deposit is classified as a porphyry-type deposit. Its ore-forming materials were partially derived from Mesoproterozoic submarine volcanic exhalative sedimentary source beds, which were later modified and enriched by granodiorite porphyry magmatism. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 192
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

Back to TopTop